Generative diffusion models have achieved spectacular performance in many areas of machine learning and generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, variational inference, and stochastic calculus, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We show that these phase transitions are always in a mean-field universality class, as they are the result of a self-consistency condition in the generative dynamics. We argue that the critical instability arising from these phase transitions lies at the heart of their generative capabilities, which are characterized by a set of mean-field critical exponents. Finally, we show that the dynamic equation of the generative process can be interpreted as a stochastic adiabatic transformation that minimizes the free energy while keeping the system in thermal equilibrium.
Read full abstract- Home
- Search
Year 

Publisher 

Journal 

1
Institution 

Institution Country 

Publication Type 

Field Of Study 

Topics 

Open Access 

Language 

Reset All
Cancel
Year 

Publisher 

Journal 

1
Institution 

Institution Country 

Publication Type 

Field Of Study 

Topics 

Open Access 

Language 

Reset All