The EMC complex, a highly conserved transmembrane chaperone in the endoplasmic reticulum (ER), has been associated in humans with sterol homeostasis and a myriad of different cellular activities, rendering the mechanism of EMC functionality enigmatic. Using fission yeast, we demonstrate that the EMC complex facilitates the biogenesis of the sterol transfer protein Lam6/Ltc1 at ER-plasma membrane and ER-mitochondria contact sites. Cells that lose EMC function sequester unfolded Lam6/Ltc1 and other proteins at the mitochondrial matrix, leading to surplus ergosterol, cold-sensitive growth, and mitochondrial dysfunctions. Remarkably, inhibition of ergosterol biosynthesis, but also fluidization of cell membranes to counteract their rigidizing effects, reduce the ER-unfolded protein response and rescue growth and mitochondrial defects in EMC-deficient cells. These results suggest that EMC-assisted biogenesis of Lam6/Ltc1 may provide, through ergosterol homeostasis, optimal membrane fluidity to facilitate biogenesis of other ER-membrane proteins.
Read full abstract