Sort by
Metabolism of Furanocoumarins by Three Recombinant CYP9A Proteins From the Polyphagous Cotton Bollworm Helicoverpa armigera.

Furanocoumarins are a class of chemical compounds with phototoxic properties. For herbivores, efficient detoxification of such defense compounds is the prerequisite to feed successfully on furanocoumarin-containing plants. The cotton bollworm Helicoverpa armigera is a very important polyphagous pest in agriculture, but how it copes with toxic furanocoumarins in some of its host plants is not well understood. Given that cytochrome P450s are well known for their capacity in xenobiotic metabolism, this study attempted to explore the potential roles of cytochrome P450s in furanocoumarin transformation in this pest. Our data showed that two linear structures (psoralen and xanthotoxin) could be metabolized by three recombinant CYP9A enzymes, but no detectable depletion was observed for the linear one with the 8-dimethylallyloxy substituent on the coumarin moiety (imperatorin) and the angular furanocoumarin (angelicin). Initial epoxidation of the double bond connecting C2' and C3' of the furano ring following by cleavage of the epoxidated furan ring, leading to the formation of more soluble, less reactive and nonphotosensitizing metabolites, was identified as a common mechanism of linear furanocoumarin metabolism using a quadrupole/time-of-flight (Q-TOF) mass spectrometry interfaced with a high performance liquid chromatography (HPLC) system. Our data demonstrated that multiple P450s were involved in the detoxification of linear furanocoumarins in the cotton bollworm. These findings contribute to a better understanding of the biochemical basis of adaptation to plant defense chemicals in this economically important pest.

Just Published
Relevant
An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes.

The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola. To determine the role of this bacterium in the reproductive success of this superclone, the presence of R. insecticola was manipulated to assess its impact on (1) the reproductive performance of this clone on two host plant species (wheat and barley), (2) the production of winged morphs, (3) changes in the insects' proteomic profiles, and (4) the root/shoot ratio of plant. It was found that the reproductive performance of this S. avenae superclone varied across host plants, depending on the presence of the facultative bacterial endosymbiont. Aphids infected with R. insecticola showed higher reproductive success on wheat, while the opposite effect was observed on barley. Aphid biomass was greater when infected with R. insecticola, particularly on barley. Additionally, aphids harboring R. insecticola exhibited a higher proportion of winged individuals on both host plants. Protein regulation in aphids on wheat was lower compared to those on barley. A higher root/shoot biomass ratio was observed in wheat plants compared to barley when infested by R. insecticola-infected aphid. Thus, R. insecticola significantly influences the reproductive performance and proteomic profile of a S. avenae superclone, with these effects shaped by the host plant. This suggests that the interaction between the host plant and the facultative endosymbiont contributes to the ecological success of this superclone.

Relevant
Postnatal Wing Morph of Pea Aphids Regulates Hemolymph Trehalose Levels.

Trehalose, a nonreducing disaccharide composed of two glucose molecules, functions as a critical energy source in various insect tissues and organs and is the predominant sugar component of the hemolymph. The pea aphid, Acyrthosiphon pisum, exhibits higher hemolymph trehalose levels than other insects. However, the dynamics of hemolymph trehalose levels throughout its life stages remain unclear owing to the challenges associated with obtaining hemolymph from these small insects. Therefore, this study was conducted to quantify hemolymph trehalose levels in A. pisum using a fluorescent trehalose sensor (Tre-C04), which enhances green fluorescent protein fluorescence through the binding of trehalose to a ligand-binding protein fused to the fluorophore. Trehalose levels were successfully quantified in minimal hemolymph samples from individual aphids, with measurements spanning from the first nymphal stage to the adult stage in both the winged and wingless forms of A. pisum. Hemolymph trehalose levels remained relatively stable throughout the life cycle but exhibited a gradual increase with each developmental stage. Notably, adult winged aphids exhibited significantly higher hemolymph trehalose levels than wingless aphids. Given that wing morph determination occurs early in the nymphal stage, these findings suggest that hemolymph trehalose levels are regulated post-wing morph development. Further investigation of the expression of genes associated with trehalose metabolism revealed that trehalose phosphate synthase 2 levels were downregulated in early-stage wingless adults, whereas insulin-related peptide 5 levels were upregulated in wingless aphids. These findings indicate that A. pisum synthesizes trehalose during the winged adult stage to serve as an energy source for flight.

Open Access
Relevant
Metabolic Adaptations in Phosphine-Resistant Tribolium castaneum Driven by Mitochondrial Enzyme Variability and Gene Expression.

Phosphine fumigation is essential for controlling storage pests like Tribolium castaneum, but its frequent application has resulted in resistance, primarily due to mutations in the Dihydrolipoamide dehydrogenase (DLD) gene associated with the rph2 allele. This study demonstrates that the Patiala population exhibits homozygous resistance variations across populations, contrasting with the susceptibility observed in laboratory cultures. Our assessment of mitochondrial DLD and Cytochrome c oxidase (COX) activities showed significantly elevated levels in the Patiala population, with increases of approximately sevenfold for DLD and 6.92-fold for COX, indicating mitochondrial adaptations for enhanced energy production. Kinetic analyses of DLD in the resistant Patiala population showed a higher Vmax (0.005 mmol/min) and a significantly increased Km (16.66 mM), indicating variations in maximal enzyme activity and substrate affinity. Furthermore, resistant T. castaneum populations displayed substantial upregulation of DLD and COX gene expression, with DLD expression increasing by 10.53-fold and COX expression peaking at 102.57-fold in Patiala. Pearson correlation analysis indicated strong positive correlations (r > 0.8) between enzymatic activity and gene expression for both DLD and COX, suggesting a coordinated role in resistance mechanisms. The PCA biplot illustrated distribution patterns of enzymatic activity and gene expression among field-resistant populations, highlighting the association between increased resistance and elevated enzymatic activity and gene expression levels. Therefore, the upregulation of DLD and COX activities in resistant populations underscores their critical roles in counteracting phosphine, reflecting metabolic reprogramming for improved energy production under stress.

Relevant