Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
Region-Based Automated Localization of Colonoscopy and Wireless Capsule Endoscopy Polyps

The early detection of polyps could help prevent colorectal cancer. The automated detection of polyps on the colon walls could reduce the number of false negatives that occur due to manual examination errors or polyps being hidden behind folds, and could also help doctors locate polyps from screening tests such as colonoscopy and wireless capsule endoscopy. Losing polyps may result in lesions evolving badly. In this paper, we propose a modified region-based convolutional neural network (R-CNN) by generating masks around polyps detected from still frames. The locations of the polyps in the image are marked, which assists the doctors examining the polyps. The features from the polyp images are extracted using pre-trained Resnet-50 and Resnet-101 models through feature extraction and fine-tuning techniques. Various publicly available polyp datasets are analyzed with various pertained weights. It is interesting to notice that fine-tuning with balloon data (polyp-like natural images) improved the polyp detection rate. The optimum CNN models on colonoscopy datasets including CVC-ColonDB, CVC-PolypHD, and ETIS-Larib produced values (F1 score, F2 score) of (90.73, 91.27), (80.65, 79.11), and (76.43, 78.70) respectively. The best model on the wireless capsule endoscopy dataset gave a performance of (96.67, 96.10). The experimental results indicate the better localization of polyps compared to recent traditional and deep learning methods.

Read full abstract
Open Access Icon Open Access
GISentinel: a software platform for automatic ulcer detection on capsule endoscopy videos

In this paper, we present a novel and clinically valuable software platform for automatic detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos take about 8 hours. They have to be reviewed manually by physicians to detect and locate diseases such as ulcers and bleedings. The process is time consuming. Moreover, because of the long-time manual review, it is easy to lead to miss-finding. Working with our collaborators, we were focusing on developing a software platform called GISentinel, which can fully automated GI tract detection and classification. This software includes 3 parts: the frequency based Log-Gabor filter regions of interest (ROI) extraction, the unique feature selection and validation method (e.g. illumination invariant feature, color independent features, and symmetrical texture features), and the cascade SVM classification for handling ulcer vs. non-ulcer cases. After the experiments, this SW gave descent results. In frame-wise, the detection rate is 69.65% (319/458). In instance-wise, the detection rate is 82.35%(28/34).The false alarm rate is 16.43% (34/207). This work is a part of our innovative 2D/3D based GI tract disease detection software platform. The final goal of this SW is to find and classification of major GI tract diseases intelligently, such as bleeding, ulcer, and polyp from the CE videos. This paper will mainly describe the automatic detection functional module.

Read full abstract