Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
In Utero Nano-Titanium Dioxide Exposure Results in Sexually Dimorphic Weight Gain and Cardiovascular Function in Offspring

Engineered nanomaterials (ENM) are capable of crossing the placental barrier and accumulating in fetal tissue. Specifically, the ENM nano-titanium dioxide (nano-TiO2), has been shown to accumulate in placental and fetal tissue, resulting in decreased birthweight in pups. Additionally, nano-TiO2 is an established cardiac toxicant and regulator of glucose homeostasis, and exposure in utero may lead to serious maladaptive responses in cardiac development and overall metabolism. The current study examines weight gain and cardiac function in male and female Sprague–Dawley rats exposed to 12 mg/m3 nano-TiO2 or filtered air for 6 non-consecutive days in utero between gestational days 12–19. These animals were randomly assigned to receive a grain-based or high-fat diet (60%) between postnatal weeks 12–24 to examine the propensity for weight gain and cardiac response as adults. Our results show a sexually dimorphic response to weight gain with male rats gaining more weight after high-fat diet following in utero nano-TiO2 exposure, and female rats gaining less weight on the high-fat diet respective of exposure. Male rats exposed to nano-TiO2in utero had reduced ejection fraction prior to diet when compared to air controls. Female rats subjected to in utero nano-TiO2 exposure showed a significant decrease in cardiac output following 12 weeks of high-fat diet. Development of cardiovascular impairments and ultimately cardiac dysfunction and disease following in utero exposures highlights the need for occupational and environmental monitoring of nanoparticulate exposure.

Read full abstract
Open Access Icon Open Access
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save
Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo RUBISCO carbon assimilation rates.

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labeling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labeling by in vivo glycolysis of positional labeled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.

Read full abstract
Open Access Icon Open Access
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save
Diabetes mellitus disrupts lncRNA Malat1 regulation of cardiac mitochondrial genome-encoded protein expression.

Understanding the cellular mechanisms behind diabetes-related cardiomyopathy is crucial as it is a common and deadly complication of diabetes mellitus. Dysregulation of the mitochondrial genome has been linked to diabetic cardiomyopathy and can be ameliorated by altering microRNA (miRNA) availability in the mitochondrion. Long noncoding RNAs (lncRNAs) have been identified to downregulate miRNAs. This study aimed to determine if diabetes mellitus impacts the mitochondrial localization of lncRNAs, their interaction with miRNAs, and how this influences mitochondrial and cardiac function. In mouse and human nondiabetic and type 2 diabetic cardiac tissue, RNA was isolated from purified mitochondria and sequenced (Ilumina HiSeq). Malat1 was significantly downregulated in both human and mouse cardiac mitochondria. The use of a mouse model with an insertional deletion of Malat1 transcript expression resulted in exacerbated systolic and diastolic dysfunction when evaluated in conjunction with a high-fat diet. The cardiac effects of a high-fat diet were countered in a mouse model with transgenic overexpression of Malat1. MiR-320a, a miRNA that binds to both mitochondrial genome-encoded gene NADH-ubiquinone oxidoreductase chain 1 (MT-ND1) as well as Malat1, was upregulated in human and mouse diabetic mitochondria. Conversely, MT-ND1 was downregulated in human and mouse diabetic mitochondria. Mice with an insertional inactivation of Malat1 displayed increased recruitment of both miR-320a and MT-ND1 to the RNA-induced silencing complex (RISC). In vitro pulldown assays of Malat1 fragments with conserved secondary structure confirmed binding capacity for miR-320a. In vitro Seahorse assays indicated that Malat1 knockdown and miR-320a overexpression impaired overall mitochondrial bioenergetics and Complex I functionality. In summary, the disruption of Malat1 presence in mitochondria, as observed in diabetic cardiomyopathy, is linked to cardiac dysfunction and mitochondrial genome regulation.NEW & NOTEWORTHY Currently, there is no known mechanism for the development of diabetes-related cardiac dysfunction. Previous evaluations have shown that mitochondria, specifically mitochondrial genome-encoded transcripts, are disrupted in diabetic cardiac cells. This study explores the presence of long noncoding RNAs (lncRNAs) such as Malat1 in cardiac mitochondria and how that presence is impacted by diabetes mellitus. Furthermore, this study will examine how the loss of Malat1 results in bioenergetic and cardiac dysfunction through mitochondrial transcriptome dysregulation.

Read full abstract
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save
Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction

The coexistence of SAH with T2DM is a common comorbidity. In this present study, we investigated the link between altered plasma antioxidant trace elements (ATE: Manganese, Selenium, Zinc and Copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile which is modified during SAH-T2DM association compared to healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of Total SFA, Palmitic acid, Arachidonic acid and PUFA 6/ PUFA 3; drop in tandem of PUFA / SFA and EPA+DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA raise, concurrently drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitantly enhance Cu, Mn and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitantly raise of ApoB100/ApoA1, Ox-LDL, tHcy and Lp(a)) and inflammation (higher of Hs-CRP, Fibrinogen and Ferritin). Our study open to new therapeutic targets and to better dietary management, such as to establish dietary ATE and PUFA 6 / PUFA 3 or PUFA / SFA reference values for atherosclerotic risk prevention in hypertensive-diabetics patients.

Read full abstract
Open Access Icon Open Access
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save
Differential effects of diphenyl diselenide (PhSe)<sub>2</sub>on mitochondria-related pathways depending on the cellular energy status in Bovine Vascular Endothelial Cells

AbstractCellular energy metabolism varies depending on tissue and cell type, as well as the availability of energy substrates and energy demands. We recently investigated the variations in cellular metabolism and antioxidant responses in primary bovine vascular endothelial cells (BAECs) under different energetic substrate conditions in vitro, specifically glucose or galactose. In this context, pharmacological agents may exert different effects on cells depending on their energy metabolism status. In this study, we aimed to characterize the effects of (PhSe)2, a redox-active molecule known for its prominent cardiovascular effects, on redox-bioenergetic cellular pathways under glycolytic or oxidative conditions in BAECs. Under glucose conditions, (PhSe)2positively impacted mitochondrial oxidative capacity, as assessed by respirometry, and was associated with changes in mitochondrial cellular dynamics. However, these changes were not observed in cells cultured with galactose. Although (PhSe)2induced the nuclear translocation of NRF2 in both glucose and galactose media, NRF2 remained in the nuclei of cells cultured in galactose for a longer duration. Additionally, activation of FOXO3a was only detected in galactose media. Notably, (PhSe)2strongly induced the expression of genes controlling mitochondrial antioxidant capacity and glutathione synthesis and recycling in glucose media, whereas its effects in galactose media were primarily focused on glutathione homeostasis. In conclusion, our findings underscore the critical influence of cellular metabolic status on the antioxidant capacity of redox-active molecules such as (PhSe)2.

Read full abstract
Open Access Icon Open Access
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save
Mitochondrial sequencing identifies long noncoding RNA features that promote binding to PNPase.

Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.

Read full abstract
Relevant
Cite IconCite
Chat PDF IconChat PDF
Save