Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
Exosome Innovations in Ophthalmology and Sjögren's Syndrome.

Exosomes, a subset of extracellular vesicles, have emerged as potential therapeutic agents in ophthalmology due to their ability to modulate immune responses, facilitate cellular communication, and promote tissue repair. This chapter explores the potential applications of exosome-based therapies in corneal and anterior segment disorders, retinal diseases, glaucoma, and Sjögren's syndrome. In corneal disorders, mesenchymal stem cell (MSC)-derived secretomes have shown promise in accelerating wound healing, reducing fibrosis, and modulating inflammation, with hydrogel encapsulation strategies potentially enhancing their efficacy. In retinal diseases, exosomes may provide neuroprotective effects in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa by modulating oxidative stress and inflammation. In glaucoma, secretome-based therapies could support retinal ganglion cell survival and optic nerve regeneration, though their impact on intraocular pressure via the trabecular meshwork remains uncertain. Additionally, exosomal biomarkers in aqueous humor are being investigated as potential diagnostic tools. In Sjögren's syndrome, exosomal biomarkers may facilitate earlier detection, while stem cell-derived exosomes hold promise in modulating immune responses and restoring glandular function. Despite encouraging preclinical and early clinical findings, standardization, scalability, and long-term safety must be addressed before clinical translation. Future research will focus on optimizing exosome-based therapies and exploring their feasibility for ophthalmic applications.

Read full abstract
Just Published Icon Just Published
The Role of Aging and Senescence in Bone Marrow Transplantation Outcome.

Bone marrow transplantation is considered a cornerstone in the treatment of hematologic malignancies and blood disorders. While it may offer the possibility of a cure through the use of high-dose chemotherapy and radiation, outcomes are significantly impacted by biological and medical factors. Herein, aging is associated with reduced hematopoiesis, immune function, and overall regenerative capacity of tissues. Growth arrest, a crucial property of cellular senescence, inhibits bone marrow function, lowers immune surveillance in aged adults, and reduces the efficiency of bone marrow transplantation. The clinical course for older recipients is further complicated by the presence of prolonged immunosuppression, slower recovery, and higher complication rates, including life-threatening graft-versus-host disease. Accordingly, there is increasing interest in explaining how aging, cellular senescence, and transplant outcomes are interrelated. The current chapter outlines the mechanisms whereby aging and senescence contribute to the immunological dysregulation and poor bone marrow transplantation outcomes observed in elderly cancer patients. The authors' goal is to suggest therapeutic approaches that will enhance the quality of life and survival rates of elderly bone marrow transplant recipients.

Read full abstract
Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Corneal, Oculoplastic, and Orbital Surgery.

Advances in regenerative medicine, cell therapy, and 3D bioprinting are reshaping the landscape of ocular surgery, offering innovative approaches to address complex conditions affecting the cornea, ocular adnexal structures, and the orbit. These technologies hold the potential to enhance treatment precision, improve functional outcomes, and address limitations in traditional surgical and therapeutic interventions.The cornea, as the eye's primary refractive and protective barrier, is particularly well-suited for regenerative approaches due to its avascular and immune-privileged nature. Cell-based therapies, including limbal stem cell transplantation as well as stromal keratocyte and corneal endothelial cell regeneration, are being investigated for their potential to restore corneal clarity and function in conditions such as limbal stem cell deficiency, keratoconus, and endothelial dysfunction. Simultaneously, 3D bioprinting technologies are enabling the development of biomimetic corneal constructs, potentially addressing the global shortage of donor tissues and facilitating personalized surgical solutions.In oculoplastic and orbital surgery, regenerative strategies and cell therapies are emerging as possible alternatives to conventional approaches for conditions such as eyelid defects, meibomian gland dysfunction, and Graves' orbitopathy. Stem cell-based therapies and bioengineered scaffolds are showing potential in restoring lacrimal glands' function as well as reconstructing complex ocular adnexal and orbital structures. Moreover, 3D-printed orbital implants and scaffolds offer innovative solutions for repairing traumatic, post-tumor resection, and congenital defects, with the potential for improved biocompatibility and precision.Molecular and gene-based therapies, including exosome delivery systems, nanoparticle-based interventions, and gene-editing techniques, are expanding the therapeutic arsenal for ophthalmic disorders. These approaches aim to enhance the efficacy of regenerative treatments by addressing underlying pathophysiological mechanisms of diseases. This chapter provides an overview of these advancements and the challenges of translating laboratory discoveries into effective therapies in clinical practice.

Read full abstract
Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms.

Three-dimensional (3D) disease modeling and drug screening systems have become important in tissue engineering, drug screening, and development. The newly developed systems support cell and extracellular matrix (ECM) interactions, which are necessary for the formation of the tissue or an accurate model of a disease. Hydrogels are favorable biomaterials due to their properties: biocompatibility, high swelling capacity, tunable viscosity, mechanical properties, and their ability to biomimic the structure and function of ECM. They have been used to model various diseases such as tumors, cancer diseases, neurodegenerative diseases, cardiac diseases, and cardiovascular diseases. Additive manufacturing approaches, such as 3D printing/bioprinting, stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), enable the design of scaffolds with high precision; thus, increasing the accuracy of the disease models. In addition, the aforementioned methodologies improve the design of the hydrogel-based scaffolds, which resemble the complicated structure and intricate microenvironment of tissues or tumors, further advancing the development of therapeutic agents and strategies. Thus, 3D hydrogel-based disease models fabricated through additive manufacturing approaches provide an enhanced 3D microenvironment that empowers personalized medicine toward targeted therapeutics, in accordance with 3D drug screening platforms.

Read full abstract
Establishment of a 3D-Printed Tissue-on-a-Chip Model for Live Imaging of Bacterial Infections.

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies. In this communication, we briefly present existing in vivo models for cystic fibrosis and their limitations in replicating human respiratory infections. We then present a novel, 3D-printed, cytocompatible microfluidic lung-on-a-chip device, designed to simulate the human lung environment, and with possible use in recapitulating general infectious diseases.Our device enables the colonisation of fully differentiated lung epithelia at an air-liquid interface with Pseudomonas aeruginosa, a key pathogen in many severe infections. By incorporating dynamic flow, we replicate the clearance of bacterial toxins and planktonic cells, simulating both acute and chronic infections. This platform supports real-time monitoring of therapeutic interventions, mimics repeated drug administrations as in clinical settings, and facilitates the analysis of colony-forming units and cytokine secretion over time. Our findings indicate that this lung-on-a-chip device has significant potential for advancing infectious disease research, in optimizing treatment strategies against infections and in developing novel treatments.

Read full abstract