Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Molecular Docking, Acute Toxicity and Antibacterial Study of Debilon and Phorbasterone-B Extracted from Rhodophyta

Introduction: Natural compounds obtained from marine algae, especially Rhodophyta are now being investigated for various biological activities. However, the antimicrobial activity and toxicity profile of compounds present in these algae isunderexplored. Objective: This study procured two compounds, Debilon and Phorbasterone-B, from Rhodophyta to analyze their in silico and in vitro potential against pathogenic bacterial strains and their acute toxicity. Methods: Debilon and Phorbasterone-B were extracted from Rhodophyta by a previously reported method and were further subsequently exploited computationally for their physicochemical properties, prediction of biological activity and molecular docking against bacterial proteins, toxicity, and experimentally for antibacterial potential against pathogenic strains of Vibrio cholera, Salmonella typhi, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. Results: Docking studies proved that these molecules possess a chemical affinity for the bacterial proteins and can inhibit the growth of these microorganisms, as confirmed by antibacterial assay. Whereas the prediction analysis and toxicity studies showed that the friendliness of these molecules to the human body is enormous. Conclusion: From this study, it has been proved that DN and PB are perfect candidates for inhibiting these bacterial strains.

Read full abstract
Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation

The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia while reducing pathogenic bacteria prevalence, such as Helicobacter, Clostridium, and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.

Read full abstract
Synthesis, Characterization, and Performance of Nano-Metal-Oxide (Al2O3) Blended Biochar for the Removal of Iron from Contaminated Water for Enhanced Kinetic and Adsorption Studies

This paper explored synthesis, characterization, and adsorption modeling for the application of nano-metal-oxide (Al2O3) blended biochar (NMOBC) derived from date palm waste in removing iron (Fe3+) from contaminated water. The pseudo-second-order model provided a goodness-of-fit that was superior to the pseudo-first-order kinetic model based on the value of R2 with all of the initial concentrations. The Elovich kinetic model also presented a good fit, indicating that chemisorption is a predominant mechanism in the adsorption process. The Langmuir, Freundlich, Redlich-Petersons, Temkin, and Sips models provided an exclusive perspective of the adsorption dynamics based on the high value of R2. However, the Sips model suggested the best fit of all of the employed models, with the lowest RMSE value of 0.0239 mg/g and the maximum adsorption capacity of 22.680 mg/g for NMOBC. Both adsorbents were effectively regenerated and reused in multiple cycles, thus leading to sustainable practices. Numerous analytical techniques, including SEM/EDX, FTIR, and BET, were employed in characterizing the structural, morphological, and functional properties of the synthesized NMOBC and BC. Subsequently, it revealed that the adsorption process and the role of various interactions are attributed to surface area, porosity, and ion exchange.

Read full abstract
Open Access