2,669 publications found
Sort by
Hepatic ultrastructural alterations induced by copper oxide nanoparticles: In vivo electron microscopy study.

Copper oxide nanomaterials (CuO NPs) have been widely utilized in many fields, including antibacterial materials, anti-tumor, osteoporosis treatments, imaging, drug delivery, cosmetics, lubricants for metallic coating, the food industry, and electronics. Little is known about the potential risk to human health and ecosystems. The present work was conducted to investigate the ultrastructural changes induced by 20 ± 5nm CuO NPs in hepatic tissues. Adult healthy male Wister albino rats were exposed to 36 intraperitoneal (ip) injections of 25nm CuO NPs (2mg/kg bw). Liver biopsies from all rats under study were processed for transmission electron microscopy (TEM) processing and examination for hepatic ultrastructural alterations. The hepatic tissue of rats exposed to repeated administrations of CuO NPs exhibited the following ultrastructural alterations: extensive mitochondrial damage in the form of swelling, crystolysis and matrix lysis, formation of phagocytized bodies and myelin multilayer figures, lysosomal hyperplasia, cytoplasmic degeneration and vacuolation, fat globules precipitation, chromatin clumping, and nuclear envelope irregularity. The findings indicated that CuO NPs interact with the hepatic tissue components and could induce alterations in the hepatocytes with the mitochondria as the main target organelles of copper nanomaterials. More work is recommended for better understanding the pathogenesis of CuO NPs.

Relevant
The endocrine disrupting effects of nanoplastic exposure: A systematic review.

Good mechanical properties and low costs have led to a global expansion of plastic production and use. Unfortunately, much of this material can be released into the environment as a waste product and cleaved into micro- and nanoplastics (NPs) whose impact on the environment and human health is still largely unknown. Considering the growing worldwide awareness on exposure to chemicals that can act as endocrine disruptors, a systematic review was performed to assess the impact of NPs on the endocrine function of in vitro and in vivo models. Although a limited number of investigations is currently available, retrieved findings showed that NPs may induce changes in endocrine system functionality, with evident alterations in reproductive and thyroid hormones and gene expression patterns, also with a trans-generational impact. Nanoplastic size, concentration, and the co-exposure to other endocrine disrupting pollutants may have an influencing role on these effects. Overall, although it is still too early to draw conclusions regarding the human health risks derived from NPs, these preliminary results support the need for further studies employing a wider range of plastic polymer types, concentrations, and time points as well as species and life stages to address a great variety of endocrine outcomes and to achieve a broader and shared consensus on the role of NPs as endocrine disruptors.

Relevant
Acrolein increases the concentration of intracellular Zn2⁺ by producing mitochondrial reactive oxygen species in A549 cells.

Smoking or occupational exposure leads to low concentrations of acrolein on the surface of the airways. Acrolein is involved in the pathophysiological processes of various respiratory diseases. Reports showed that acrolein induced an increase in mitochondrial reactive oxygen species (mROS). Furthermore, exogenous H₂O₂ was found to increase intracellular Zn2⁺ concentration ([Zn2⁺]ᵢ). However, the specific impact of acrolein on changes in intracellular Zn2⁺ levels has not been fully investigated. Therefore, this study aimed to investigate the effects of acrolein on mROS and [Zn2⁺]ᵢ in A549 cells. We used Mito Tracker Red CM-H2Xros (MitoROS) and Fluozin-3 fluorescent probes to observe changes in mROS and intracellular Zn2⁺. The results revealed that acrolein increased [Zn2⁺]ᵢ in a time- and dose-dependent manner. Additionally, the production of mROS was observed in response to acrolein treatment. Subsequent experiments showed that the intracellular Zn2⁺ chelator TPEN could inhibit the acrolein-induced elevation of [Zn2⁺]ᵢ but did not affect the acrolein-induced mROS production. Conversely, the acrolein-induced elevation of mROS and [Zn2⁺]ᵢ were significantly decreased by the inhibitors of ROS formation (NaHSO₃, NAC). Furthermore, external oxygen free radicals increased both [Zn2⁺]ᵢ levels and mROS production. These results demonstrated that acrolein-induced elevation of [Zn2⁺]ᵢ in A549 cells was mediated by mROS generation, rather than through a pathway where [Zn2⁺]ᵢ elevation leads to mROS production.

Relevant
Antioxidants and mitochondrial/lysosomal protective agents reverse toxicity induced by titanium dioxide nanoparticles on human lymphocytes.

Most of the literature has focused on titanium dioxide (TiO2) nanoparticles (NPs) toxicity, showing the importance of oxidative stress, mitochondrial dysfunction, and cell death in TiO2-induced toxicity. For this purpose, in the current study, we investigated the protective role of antioxidant and mitochondrial/lysosomal protective agents to minimize TiO2 NPs-induced toxicity in human lymphocytes. Human lymphocytes were obtained from heathy individuals and treated with different concentrations (80, 160, and 320µg/mL) of TiO2 NPs, and then human lymphocytes preincubated with butylated hydroxytoluene (BHT), cyclosporin A (CsA), and chloroquine separately were exposed to TiO2 NPs for 6h. In all the above-mentioned treated groups, adverse parameters such as cytotoxicity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), lysosomal membrane destabilization, the levels of malondialdehyde (MDA), and glutathione (GSH) were measured. The results showed that TiO2 nanoparticles induced cytotoxicity through ROS formation, MMP collapse, lysosomal damages, depletion of GSH, and lipid peroxidation. However, BHT as an antioxidant, CsA as a mitochondrial permeability transition (MPT) pore sealing agent, and chloroquine as a lysosomotropic agent, significantly inhibited all the TiO2 NPs-induced cellular and organelle toxicities. Thus, it seems that antioxidant and mitochondrial/lysosomal protective agents are promising preventive strategies against TiO2 NPs-induced toxicity.

Relevant
Ecotoxicological response surface analysis of salt and pH in textile effluent on Bacillus subtilis and Lactuca sativa.

Textile effluents, although their composition can vary considerably, typically contain high levels of dissolved salts and exhibit wide variations in pH. Ecotoxicological studies regarding the effects of these parameters, however, have been limited owing to the need for sensitive and easy-to-handle bioindicators that require low amounts of sampling, are cost-effective, time-efficient, and ethically endorsed. This kind of study, additionally, demands robust multi-factorial statistical designs that can accurately characterize the individual and combined relationship between variables. In this research, Response Surface Methodology (RSM) was used to calculate the individual and interaction effects of NaCl concentration and pH value of a Simulated Textile Effluent (STE) on the development rate (DR) of the bioindicators: Bacillus subtilis bacteria and Lactuca sativa lettuce. The results demonstrated that the bioindicators were sensitive to both NaCl and pH factors, where the relative sensitivity relationship was B. subtilis > L. sativa. The quadratic equations generated in the experiments indicated that increased concentrations of 50-250 mg L-1 of NaCl caused a perturbance of 1.40%-34.40% on the DR of B. subtilis and 0.50%-12.30% on L. sativa. The pH factor at values of 3-11 caused an alteration of 27.00%-64.78% on the DR of the B. subtilis and 51.37%-37.37% on the L. sativa. These findings suggest that the selected bioindicators could serve as effective tools to assess the ecotoxicological effects of textile effluents on different ecological systems, and the RSM was an excellent tool to consider the ecotoxicological effects of the parameters and to describe the behavior of the results. In conclusion, the NaCl and pH factors may be responsible for disrupting different ecosystems, causing imbalances in their biodiversity and biomass. Before discharge or reuse, it is suggested to remove salts and neutralize pH from textile effluents and, mostly, develop novel, eco-friendlier textile processing techniques.

Relevant
Exposure to MMVF in residential and commercial buildings: A literature review and quantitative synthesis.

Man-made vitreous fibers (MMVF) are a class of inorganic fibrous materials that include glass and mineral wools, continuous glass filaments, and refractory ceramic fibers valued for their insulative properties in high temperature applications. Potential health effects from occupational exposure to MMVF have been investigated since the 1970s, with focus on incidence of respiratory tract cancer among MMVF-exposed production workers. The general population may experience exposure to MMVF in residential and/or commercial buildings due to deterioration, construction, or other disruption of materials containing these fibers. Numerous studies have characterized potential exposures that may occur during material disruption or installation; however, fewer have aimed to measure background MMVF concentrations in residential and commercial spaces (i.e., non-production settings) to which the general population may be exposed. In this study, we reviewed and synthesized peer-reviewed studies that evaluated respirable MMVF exposure levels in non-production, indoor environments. Among studies that analyzed airborne respirable MMVF concentrations, 110-fold and 1.5-fold differences in estimated concentrations were observed for those studies utilizing phase contrast optical microscopy (PCOM) versus transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. A positive correlation was observed between respirable air concentrations of MMVF and total surface concentrations of MMVF in seldom-cleaned areas. Ultimately, available evidence suggests that both ambient air and surface concentrations of MMVF in indoor environments are consistently lower than exposure limits developed to prevent negative health outcomes among sensitive populations.

Relevant
Occupational exposure to cosmetic talc and mesothelioma in barbers, hairdressers, and cosmetologists: A systematic review of the epidemiology.

Inhalation exposure to cosmetic talc has generated much scientific debate regarding its potential as a risk factor for mesothelioma, a rare, but fatal cancer. Barbers, hairdressers, and cosmetologists have regularly used cosmetic talc-containing products, but the collective epidemiological evidence for mesothelioma in these occupations has yet to be described. As such, we conducted a systematic review of PubMed and the National Institute for Occupational Safety and Health's (NIOSH) Numbered Publications list to identify original epidemiological literature reporting measures of association between these occupations and incidence of or death from mesothelioma. Literature screening was performed independently twice, the results of which were summarized and tabulated and underwent a review for their accuracy. A total of 12 studies met our inclusion criteria, including three cohort, six case-control, and three proportionate mortality/registration studies. The data from these studies were collected in 13 European and North American countries, spanning more than 50 years. We supplemented this review with queries of occupational mortality databases that are managed by the Washington State Department of Health and NIOSH for 26 U.S. states. Most findings were null and if statistically significant, nearly all showed an inverse relationship, indicative of a protective effect of these occupations on mesothelioma risk. Overall, the epidemiological evidence does not support an increased risk of mesothelioma for these occupations. This research fills an important data gap on the etiology of mesothelioma in barbers, hairdressers, and cosmetologists, and provides a benchmark for those with comparatively less exposure, such as non-occupational users of similar cosmetic talc-containing products.

Relevant