887 publications found
Sort by
Querying Data Exchange Settings Beyond Positive Queries

Abstract Data exchange, the problem of transferring data from a source schema to a target schema, has been studied for several years. The semantics of answering positive queries over the target schema has been defined in early work, but little attention has been paid to more general queries. A few proposals of semantics for more general queries exist but they either do not properly extend the standard semantics under positive queries, giving rise to counterintuitive answers, or they make query answering undecidable even for the most important data exchange settings, for example, with weakly-acyclic dependencies. The goal of this paper is to provide a new semantics for data exchange that is able to deal with general queries. At the same time, we want our semantics to coincide with the classical one when focusing on positive queries, and to not trade-off too much in terms of complexity of query answering. We show that query answering is undecidable in general under the new semantics, but it is $\text{co}\text{NP}\text{-complete}$ when the dependencies are weakly-acyclic. Moreover, in the latter case, we show that exact answers under our semantics can be computed by means of logic programs with choice, thus exploiting existing efficient systems. For more efficient computations, we also show that our semantics allows for the construction of a representative target instance, similar in spirit to a universal solution, that can be exploited for computing approximate answers in polynomial time.

Learnability with PAC Semantics for Multi-agent Beliefs

AbstractThe tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.

Open Access