221 publications found
Sort by
Robust analyzes for longitudinal clinical trials with missing and non-normal continuous outcomes

ABSTRACT Missing data is unavoidable in longitudinal clinical trials, and outcomes are not always normally distributed. In the presence of outliers or heavy-tailed distributions, the conventional multiple imputation with the mixed model with repeated measures analysis of the average treatment effect (ATE) based on the multivariate normal assumption may produce bias and power loss. Control-based imputation (CBI) is an approach for evaluating the treatment effect under the assumption that participants in both the test and control groups with missing outcome data have a similar outcome profile as those with an identical history in the control group. We develop a robust framework to handle non-normal outcomes under CBI without imposing any parametric modeling assumptions. Under the proposed framework, sequential weighted robust regressions are applied to protect the constructed imputation model against non-normality in the covariates and the response variables. Accompanied by the subsequent mean imputation and robust model analysis, the resulting ATE estimator has good theoretical properties in terms of consistency and asymptotic normality. Moreover, our proposed method guarantees the analysis model robustness of the ATE estimation in the sense that its asymptotic results remain intact even when the analysis model is misspecified. The superiority of the proposed robust method is demonstrated by comprehensive simulation studies and an AIDS clinical trial data application.

Open Access
Relevant
Bayesian-inspired minimum contamination designs under a double-pair conditional effect model

In two-level fractional factorial designs, conditional main effects can provide insights by which to analyze factorial effects and facilitate the de-aliasing of fully aliased two-factor interactions. Conditional main effects are of particular interest in situations where some factors are nested within others. Most of the relevant literature has focussed on the development of data analysis tools that use conditional main effects, while the issue of optimal factorial design for a given linear model involving conditional main effects has been largely overlooked. Mukerjee, Wu and Chang [Statist. Sinica 27 (2017) 997–1016] established a framework by which to optimize designs under a conditional effect model. Although theoretically sound, their results were limited to a single pair of conditional and conditioning factors. In this paper, we extend the applicability of their framework to double pairs of conditional and conditioning factors by providing the corresponding parameterization and effect hierarchy. We propose a minimum contamination-based criterion by which to evaluate designs and develop a complementary set theory to facilitate the search of minimum contamination designs. The catalogues of 16- and 32-run minimum contamination designs are provided. For five to twelve factors, we show that all 16-run minimum contamination designs under the conditional effect model are also minimum aberration according to Fries and Hunter [Technometrics 22 (1980) 601–608].

Open Access
Relevant
Evaluation of the Canadian government policies on controlling the COVID-19 outbreaks

In this paper, we investigate the COVID-19 pandemic in Canada and evaluate the Canadian government policies on controlling COVID-19 outbreaks. The first case of COVID-19 was reported in Ontario on 25 January 2020. Since then, there have been over million cases by now. During this time period, the federal, provincial and local governments have implemented regulations and policies in order to control the pandemic. To evaluate these government policies, which may be done by analysing the infection rate, infection period and reproductive number of COVID-19, we approach the problem by introducing an extended susceptible-exposed-infectious-removed (SEIR) model and conduct the model inference by using the iterated filter ensemble adjustment Kalman filter (IF-EAKF) algorithm. We first divide the time period into phases according to the policy intensities in each province by segmenting the time period from 4 March 2020 to 31 October 2020 into three time phases: the exploding phase, the strict policy implementation phase, and the provincial reopening phase. We then use IF-EAKF algorithm to obtain the estimates of the model parameters. We show that the infection rate in the second phase is lower than that in both first and third phases. We also discuss the number of new COVID-19 cases under different policy intensities and different policy durations in the third wave of the pandemic.

Open Access
Relevant