3,654 publications found
Sort by
Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles.

The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.

Open Access
Relevant
Physiological response, phytochemicals, antioxidant, and enzymatic activity of date palm (Phoenix dactylifera L.) cultivated under different storage time, harvesting Stages, and temperatures.

The quality of date palm is highly influenced by postharvest techniques, storage, and processing effects. Fruits stored at room temperature result in dehydration, whereas higher temperatures accelerate the enzymatic browning of fruit. This study aimed to enhance postharvest quality of date palms through improved harvesting and storage techniques. The fruits of date palm (Phoenix dactylifera L. cv. Dhakki) were harvested at khalal (mature, firm), rutab (fully ripe), or tamar (dry) stages and stored at different temperatures (12, 18, or 24°C) for 0, 15, 30, or 45days. The analysis of the data showed that the studied attributes significantly different at various ripening stages and storage temperatures. The fruits harvested at Khalal stage proved to be the best in retaining moisture content (23.16%), total soluble solids (20.36 oBrix), fruit juice pH (4.97), ascorbic acid (24.65mg 100g-1), non-reducing sugars (26.84%), percent acidity (0.39%), antioxidant activity (211.0mg 100g-1), total phenolic (40.07 mg100g-1), flavonoids (45.8mg 100g-1), tannin (70.7 mg100g-1), catalase (1.82 U g-1), peroxidase (1.4 U g-1), soluble protein (38.2mgkg-1), brightness (29.9), chroma (16.4), hue angle (34.9), color (16.8), and with minimum weight loss (8.48%) as compared to fruit harvested at Rutab and Tamar stage. Regarding the means for storage temperature, the fruits stored at 12±3°C retained the highest moisture content (23.2%), total soluble solids (13.5 oBrix), fruit juice pH (5.42), percent acidity (0.29%), ascorbic acid (24.4 mg100g-1), reducing sugars (31.1%), non-reducing sugars (26.5%), antioxidant activity (214.6 mg100g-1), total phenolic (41.6mg100 g-1), flavonoids (44.7mg100 g-1), tannin (71.7mg 100g-1), catalase (1.56 U g-1), peroxidase (1.21 U g-1), soluble protein (31.8mgkg-1), brightness (28.8), chroma (15.3), hue angle (29.6), color (16.2),with minimum weight loss (9.91%). It was concluded that for quality fruit production of date palm cv. Dhakki could be harvested at Khalal stage and stored at a temperature of 12±3°C.

Open Access
Relevant
Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser.

A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A+B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100g/mL. With an IC50 of 0.69mg/mL, the laser-treated S. marianum (6min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.

Open Access
Relevant
Two-step method for rapid isolation of genomic DNA and validation of R81T insecticide resistance mutation in Myzus persicae.

Isolation and amplification of nucleic acid (DNA) is considered a vital and potent instrument in molecular biological research. However, its functioning outside of a laboratory setting is difficult because of complex procedures that demand expert personnel and expensive equipment in addition to the fulfillment of several additional requirements. DNA isolation from minute insects is sometimes difficult, making diagnostic and genotyping procedures problematic. Thus, the current work offers a high-throughput, cost-effective, straightforward, and faster approach for isolating DNA from the aphid Myzus persicae. Intriguingly, two-step DNA extraction process yielded a high yield of extremely pure genomic DNA and required only 10s to complete. PCR investigation aiming at amplifying the non-synonymous R81T region on the loop D site of the nAChR gene of M. persicae was subsequently utilized to successfully validate the recovered DNA. Moreover, the proposed method was compared in terms of yield and purity with conventionally used DNA isolation methods including, phenol:chloroform, salt out, and commercially available kits. In conclusion, this newly developed method would enable researchers to quickly process many biological samples used to analyze genetic diversity, mutant screening, and large spectrum diagnosis both in laboratory and field conditions.

Open Access
Relevant
Moringa oleifera seed based green synthesis of copper nanoparticles: Characterization, environmental remediation and antimicrobial activity.

Textile dyes and heavy metals like hexavalent chromium [Cr(VI)] are considered major water pollutants. In addition, microbial contamination also seriously threatens potable water availability. The present study used Moringa oleifera seed aqueous extract to synthesize copper nanoparticles (MOS-CuNPs). MOS-CuNPs were characterized by various spectroscopy and microscopic techniques. MOS-CuNPs were shown to be effectual at removal of Cr(VI). The initial concentration of Cr(VI), contact time, pH, and temperature all impacted the removal of Cr(VI) by different concentrations of MOS-CuNPs. At low concentrations of MOS-CuNPs (0.3mg/ml) pseudo-first order and high concentrations of MOS-CuNPs (0.4 and 0.5mg/ml), pseudo-second order kinetics were obeyed. Thermodynamic analysis revealed that Cr(VI) was removed spontaneously, and the reaction was exothermic. In adsorption isotherm, equilibrium data followed Langmuir equation for Cr(VI) adsorption by MOS-CuNPs and maximum uptake capacity calculated was 38.6mg/g. MOS-CuNPs efficiently removed cationic (rhodamine B, malachite green and methylene blue and) and anionic (congo red, titan yellow and methyl orange) dyes within 10min of contact time. Further MOS-CuNPs showed antimicrobial activity against human pathogenic bacteria and fungi. Altogether, MOS-CuNPs could be used for environmental (water treatment) and biological applications.

Open Access
Relevant