2,342 publications found
Sort by
Non-local and non-Hermitian acoustic metasurfaces

Acoustic metasurfaces are at the frontier of acoustic functional material research owing to their advanced capabilities of wave manipulation at an acoustically vanishing size. Despite significant progress in the last decade, conventional acoustic metasurfaces are still fundamentally limited by their underlying physics and design principles. First, conventional metasurfaces assume that unit cells are decoupled and therefore treat them individually during the design process. Owing to diffraction, however, the non-locality of the wave field could strongly affect the efficiency and even alter the behavior of acoustic metasurfaces. Additionally, conventional acoustic metasurfaces operate by modulating the phase and are typically treated as lossless systems. Due to the narrow regions in acoustic metasurfaces’ subwavelength unit cells, however, losses are naturally present and could compromise the performance of acoustic metasurfaces. While the conventional wisdom is to minimize these effects, a counter-intuitive way of thinking has emerged, which is to harness the non-locality as well as loss for enhanced acoustic metasurface functionality. This has led to a new generation of acoustic metasurface design paradigm that is empowered by non-locality and non-Hermicity, providing new routes for controlling sound using the acoustic version of 2D materials. This review details the progress of non-local and non-Hermitian acoustic metasurfaces, providing an overview of the recent acoustic metasurface designs and discussing the critical role of non-locality and loss in acoustic metasurfaces. We further outline the synergy between non-locality and non-Hermiticity, and delineate the potential of using non-local and non-Hermitian acoustic metasurfaces as a new platform for investigating exceptional points, the hallmark of non-Hermitian physics. Finally, the current challenges and future outlook for this burgeoning field are discussed.

Relevant
Viscosity and diffusion in life processes and tuning of fundamental constants

Viewed as one of the grandest questions in modern science, understanding fundamental physical constants has been discussed in high-energy particle physics, astronomy and cosmology. Here, I review how condensed matter and liquid physics gives new insights into fundamental constants and their tuning. This is based on two observations: first, cellular life and the existence of observers depend on viscosity and diffusion. Second, the lower bound on viscosity and upper bound on diffusion are set by fundamental constants, and I briefly review this result and related recent developments in liquid physics. I will subsequently show that bounds on viscosity, diffusion and the newly introduced fundamental velocity gradient in a biochemical machine can all be varied while keeping the fine-structure constant and the proton-to-electron mass ratio intact. This implies that it is possible to produce heavy elements in stars but have a viscous planet where all liquids have very high viscosity (for example that of tar or higher) and where life may not exist. Knowing the range of bio-friendly viscosity and diffusion, we will be able to calculate the range of fundamental constants which favour cellular life and observers and compare this tuning with that discussed in high-energy physics previously. This invites an inter-disciplinary research between condensed matter physics and life sciences, and I formulate several questions that life science can address. I finish with a conjecture of multiple tuning and an evolutionary mechanism.

Open Access
Relevant
Topological phononic metamaterials

The concept of topological energy bands and their manifestations have been demonstrated in condensed matter systems as a fantastic paradigm toward unprecedented physical phenomena and properties that are robust against disorders. Recent years, this paradigm was extended to phononic metamaterials (including mechanical and acoustic metamaterials), giving rise to the discovery of remarkable phenomena that were not observed elsewhere thanks to the extraordinary controllability and tunability of phononic metamaterials as well as versatile measuring techniques. These phenomena include, but not limited to, topological negative refraction, topological ‘sasers’ (i.e. the phononic analog of lasers), higher-order topological insulating states, non-Abelian topological phases, higher-order Weyl semimetal phases, Majorana-like modes in Dirac vortex structures and fragile topological phases with spectral flows. Here we review the developments in the field of topological phononic metamaterials from both theoretical and experimental perspectives with emphasis on the underlying physics principles. To give a broad view of topological phononics, we also discuss the synergy with non-Hermitian effects and cover topics including synthetic dimensions, artificial gauge fields, Floquet topological acoustics, bulk topological transport, topological pumping, and topological active matters as well as potential applications, materials fabrications and measurements of topological phononic metamaterials. Finally, we discuss the challenges, opportunities and future developments in this intriguing field and its potential impact on physics and materials science.

Open Access
Relevant