1,107 publications found
Sort by
Role of Green Logistics in the Construction of Sustainable Supply Chains

Abstract The global supply chain has been growing strongly in recent years. This development brings many benefits to the economy, society, and human resources in each country but also causes a large number of concerns related to the environment since traditional logistics activities in the supply chain have been releasing a significant amount of emissions. For that reason, many solutions have been proposed to deal with these environmental pollution problems. Among these, three promising solutions are expected to completely solve environmental problems in every supply chain: (i) Application of blockchain in the supply chain, (ii) Use of renewable energy and alternative fuels, and (iii) Design of a closed supply chain. However, it seems to lack a comprehensive study of these solutions aiming to overcome the drawbacks of traditional logistics. Indeed, this work focuses on analyzing and evaluating the three above-mentioned solutions and the impacts of each solution on solving problems related to traditional logistics. More importantly, this work also identifies critical factors and challenges such as policies, laws, awareness, and risks that are found to be remarkable difficulties in the shifting progress of traditional logistics to green logistics. Finally, directions for developing and deploying green solutions to the logistics, supply chain, and shipping sectors toward decarbonization strategies and net-zero goals are discussed in detail.

Open Access
Relevant
Diagnostic Analysis of Exhaust Gas with A Quick-Changing Temperature from a Marine Diesel Engine Part II / Two Factor Analysis

Abstract The article presents a continuation of research carried out to determine the effect of input parameters (changes in engine structure parameters) on selected output parameters (diagnostic measures), based on quickly changing exhaust gas temperature. A method of determining the simultaneous influence of two input factors (the structure parameter and the engine load) on one output factor was presented, as well as an evaluation of which of the analysed input factors has a stronger influence on the output parameter. The article presents the stages of the experimental research conducted and statistical inference based on the results. Three changing parameters for the structure were reviewed: the active cross-sectional area of the inlet air channel, the injector opening pressure and the compression ratio. Based on the quickly changing temperatures of the exhaust gases, three diagnostic measures were defined and subjected to statistical tests. The following data were averaged over one cycle for a 4-stroke engine operation: the intensity of changes, the specific enthalpy and the peak-to-peak value of the exhaust gas temperature. The results of the two-factor analysis are presented. Conclusions on the analysis are given and a criterion for the selection of a diagnostic measure, depending on the analysed parameter of the structural design of the diesel engine, is proposed. The previous part of the article presented the results of the first stage of the elimination study: the one-factor statistical analysis (randomised complete plan). This paper presents the results of the second stage of the studies: two-factor analysis (block randomised plan), where the significance of the effect of changing the values of the structural parameters on the diagnostic measures were analysed in the background of a variable engine load. The next (third) part will present the results of the calculations and analysis of the interaction coefficient of significance.

Open Access
Relevant
Application of Fuel Cold Energy in CO<sub>2</sub> Bog Reliquefaction System on Ammonia-Powered CO<sub>2</sub> Carrier

Abstract A CO2 boiled off gas (CO2 BOG) reliquefaction system using liquid ammonia cold energy is designed to solve the problems of fuel cold energy waste and the large power consumption of the compressor in the process of CO2 BOG reliquefaction on an ammonia-powered CO2 carrier. Aspen HYSYS is used to simulate the calculation, and it is found that the system has lower power consumption than the existing reliquefaction method. The temperature of the heat exchanger heater-1 heat flow outlet node (node C-4) is optimised, and it is found that, with the increase of the node C-4 temperature, the power consumption of the compressor gradually increases, and the liquefaction fraction of CO2 BOG gradually decreases. Under 85% conditions, when the ambient temperature is 0°C and the temperature of node C-4 is -9°C, the liquid fraction of CO2 BOG reaches the maximum, which is 74.46%, and the power of Compressor-1 is the minimum, which is 40.90 kW. According to this, the optimum temperature of node C-4 under various working conditions is determined. The exergy efficiency model is established, in an 85% ship working condition with the ambient temperature of 40°C, and the exergy efficiency of the system is the maximum, reaching 59.58%. Therefore, the CO2 BOG reliquefaction system proposed in this study could realise effective utilisation of liquid ammonia cold energy.

Open Access
Relevant
Determination of Rational Design Values for Gas-Air Coolers Components of Exhaust Gases of Marine Power Plants

Abstract Modernisation of marine power plants in the transport vessel fleet to satisfy the requirements of the International Maritime Organization is an urgent scientific and technical problem. Currently, the use of catalytic selective filters, dry and wet scrubber systems and exhaust gas recirculation for marine diesel engines is widely used for this purpose. An analysis of the use of ejection gas-air coolers is presented as an additional method of emission reduction. However, the use of such device does not neutralise the harmful emissions of power plant engines, but only increases the volume concentration of their exhaust gases. But this will help to increase the efficiency of dispersion of harmful emissions, by reducing the concentration of harmful emissions to values not exceeding the maximum permissible concentrations. Its efficiency depends on the load mode of the diesel engine. It is found that the initial concentration of harmful substances in combustion products due to their dilution with fresh air at 100% engine load is reduced by about 50%. The values of the reduction of the concentration and temperature of exhaust gases with the reduction of the engine load to 75% and 50% depending on the louvre angle are obtained. It is proved that ejection gas-air coolers can be an effective additional means for compliance with modern environmental parameters, especially when vessels are in special areas of the world’s oceans.

Open Access
Relevant
Fault Diagnosis of ME Marine Diesel Engine Fuel Injector with Novel IRCMDE Method

Abstract As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based filter(FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The experimental results from a MAN B&amp;W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is more accurate than the vibration signal in reflecting the injector operating conditions.

Open Access
Relevant
Glass Microspheres Thermo-Deformation Sintering Processes in the Technologies of Obtaining Materials for Underwater Technical Equipment

Abstract In this work, the important scientific and technical problem of creating multifunctional composite materials for shipbuilding and ocean engineering was solved. The work aimed to study the thermal deformation processes of sintering glass microspheres to obtain lightweight glass composites with a cellular structure that provides positive buoyancy and sound insulation properties. For this purpose, glass microspheres of Na2O‒SiO2 and Na2O‒B2O3‒SiO2 composition with a dispersion of 10 to 60 μm were used as raw materials. They were sintered to form a closed, porous structure. The theoretical substantiation of technological parameters is based on the concepts of solid state and glassy state chemistry and physicochemical concepts of glass softening processes. The process of hot-pressing glass microspheres without plasticisers and additives was investigated. The author’s own laboratory equipment was used for the experiments. The sintering intensity was determined from the results of shrinkage processes; the kinetic shrinkage curves were constructed in semilogarithmic coordinates. The glass composite samples were examined by optical and electron microscopy. As a criterion, the storage of spherical microspheres under the influence of simultaneous heating to 700 °C with the application of pressure in the range of 0,5 to 1,5 MPa was chosen. It was established that the formation of a predominantly closed-porous structure of glass composites with a density of 350...600 kg/m3 occurs by the mechanisms of viscous glass phase flow through liquefaction processes in the walls of microspheres. At the same time, shrinkage processes in the linear direction reach up to 50%. The acoustic properties were investigated by measuring the differences in sound pressure levels in octave frequency bands using a Kundt pipe. The water absorption of the glass composite samples was determined at hydrostatic pressures up to 20 MPa. The research results were compared with the characteristics of analogue composites, such as syntactic foams and foam glass. The developed materials can be used in the design and manufacture of technical equipment for research and maintenance of underwater infrastructure. The prospects for further research are related to the feasibility study and marketing research on implementing the developed glass composites.

Open Access
Relevant