1,454 publications found
Sort by
Mitochondrial transplantation attenuates traumatic neuropathic pain, neuroinflammation, and apoptosis in rats with nerve root ligation.

Traumatic neuropathic pain (TNP) is caused by traumatic damage to the somatosensory system and induces the presentation of allodynia and hyperalgesia. Mitochondrial dysfunction, neuroinflammation, and apoptosis are hallmarks in the pathogenesis of TNP. Recently, mitochondria-based therapy has emerged as a potential therapeutic intervention for diseases related to mitochondrial dysfunction. However, the therapeutic effectiveness of mitochondrial transplantation (MT) on TNP has rarely been investigated. Here, we validated the efficacy of MT in treating TNP. Both in vivo and in vitro TNP models by conducting an L5 spinal nerve ligation in rats and exposing the primary dorsal root ganglion (DRG) neurons to capsaicin, respectively, were applied in this study. The MT was operated by administrating 100 µg of soleus-derived allogeneic mitochondria into the ipsilateral L5 DRG in vivo and the culture medium in vitro. Results showed that the viable transplanted mitochondria migrated into the rats' spinal cord and sciatic nerve. MT alleviated the nerve ligation-induced mechanical and thermal pain hypersensitivity. The nerve ligation-induced glial activation and the expression of pro-inflammatory cytokines and apoptotic markers in the spinal cord were also repressed by MT. Consistently, exogenous mitochondria reversed the capsaicin-induced reduction of mitochondrial membrane potential and expression of pro-inflammatory cytokines and apoptotic markers in the primary DRG neurons in vitro. Our findings suggest that MT mitigates the spinal nerve ligation-induced apoptosis and neuroinflammation, potentially playing a role in providing neuroprotection against TNP.

Open Access
Relevant
The Pace of Biological Aging Helps Explain the Association Between Insomnia and Chronic Low Back Pain.

Chronic low back pain (cLBP) is associated with insomnia and advanced age. Emerging evidence suggests that the severity of both sleep disorders (like insomnia) and chronic pain are associated with a faster pace of biological aging. We aimed to determine whether the pace of biological age mediates the relationship between insomnia and the impact of cLBP in a sample of community-dwelling adults ages 19 to 85 years. Participants (49 with no pain, 32 with low-impact pain, and 37 with high-impact pain) completed sociodemographic, pain, insomnia, and short physical performance battery assessments. We calculated the pace of biological aging using DunedinPACE from blood leukocyte DNA. On average, individuals with high-impact cLBP had significantly faster biological aging than those with low-impact and no chronic pain (p < 0.001). Bivariate associations of DunedinPACE scores with insomnia severity and functional performance were significant at p < 0.01 (rs = 0.324 and -0.502, respectively). After adjusting for race and sex, the association of insomnia severity and the impact of cLBP was partially mediated by the pace of biological aging (β = 0.070, p < 0.001). Also, the association of insomnia severity with functional performance was partially mediated by the pace of biological aging (β = -0.105, p < 0.001). Thus, insomnia remains strongly predictive of cLBP outcomes, and the pace of biological aging helps explain this association. Future prospective studies with repeated assessments are needed to uncover the directionality of these complex relationships and ultimately develop interventions to manage cLBP.

Open Access
Relevant
Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation.

Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through intradermally injection of type II collagen in complete Freund's adjuvant solution. Following CIA inducement, the paws and ankles of mice were found to swell, mechanical pain and spontaneous pain were induced, and their motor coordination was impaired. The spinal inflammatory reaction was triggered, which presented as severe infiltration of inflammatory cells, and the expression levels of GFAP, IL-1β, NLRP3, and cleaved caspase-1 increased. Oxidative stress in the spinal cord of CIA mice was manifested as reduced Nrf2 and NDUFB11 expression and SOD activity, and increased levels of DHODH and Cyto-C. At the same time, spinal AMPK activity was decreased. In order to explore the potential therapeutic options for arthritic pain, Xanthohumol (Xn) was intraperitoneally injected into mice for three consecutive days. Xn treatment was found to reduce the number of spontaneous flinches, in addition to elevating mechanical pain thresholds and increasing latency time. At the same time, Xn treatment in the spinal cord reduced NLRP3 inflammasome-mediated inflammation, increased the Nrf2-mediated antioxidant response, and decreased mitochondrial ROS level. In addition, Xn was found to bind with AMPK via two electrovalent bonds and increased AMPK phosphorylation at Thr174. In summary, the findings indicate that Xn treatment activates AMPK, increases Nrf2-mediated antioxidant response, reduces Drp1-mediated mitochondrial dysfunction, suppresses neuroinflammation, and can serve to relieve arthritis pain.

Open Access
Relevant
PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus.

Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.

Open Access
Relevant
Mechanisms of acupuncture-electroacupuncture on inflammatory pain.

Acupuncture, as a traditional treatment, has been extensively used in China for thousands of years. According to the World Health Organization (WHO), acupuncture is recommended for the treatment of 77 diseases. And 16 of these diseases are related to inflammatory pain. As a combination of traditional acupuncture and modern electrotherapy, electroacupuncture (EA) has satisfactory analgesic effects on various acute and chronic pain. Because of its good analgesic effects and no side effects, acupuncture has been widely accepted all over the world. Despite the increase in the number of studies, the mechanisms via which acupuncture exerts its analgesic effects have not been conclusively established. A literature review of related research is of great significance to elaborate on its mechanisms and to inform on further research directions. We elucidated on its mechanisms of action on inflammatory pain from two levels: peripheral and central. It includes the mechanisms of acupuncture in the periphery (immune cells and neurons, purinergic pathway, nociceptive ion channel, cannabinoid receptor and endogenous opioid peptide system) and central nervous system (TPRV1, glutamate and its receptors, glial cells, GABAergic interneurons and signaling molecules). In this review, we collected relevant recent studies to systematically explain the mechanisms of acupuncture in treating inflammatory pain, with a view to providing direction for future applications of acupuncture in inflammatory pain and promoting clinical development.

Open Access
Relevant
Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance.

Spinal cord stimulation (SCS) is a last resort treatment for pain relief in painful diabetic peripheral neuropathy (PDPN) patients. However, the effectivity of SCS in PDPN is limited. New SCS paradigms such as high frequency (HF) and differential target multiplexed (DTM) might improve responder rates and efficacy of SCS-induced analgesia in PDPN patients, and are suggested to modulate the inflammatory balance and glial response in the spinal dorsal horn. The aim of this study was to research the effects of Con-, HF- and DTM-SCS on pain behavior and the spinal inflammatory balance in an animal model of PDPN. Streptozotocin-induced PDPN animals were stimulated for 48 hours with either Con-SCS (50Hz), HF-SCS (1200Hz) or DTM-SCS (combination of Con- and HF-SCS). Mechanical hypersensitivity was assessed using Von Frey (VF) test and the motivational aspects of pain were assessed using the mechanical conflict avoidance system (MCAS). The inflammatory balance and glial response were analyzed in the dorsal spinal cord based on RNA expression of pro- and anti-inflammatory cytokines (Tnf-α, Il-1ß, Il-4, Il-10), a microglia marker (Itgam), an astrocyte marker (Gfap), a T-cell marker (Cd3d), microglia proliferation markers (Irf8, Adgre1) and P2X4, p13-MAPK, BDNF signaling markers (P2x4, Mapk14, Bdnf). The results show that Con-, HF-, and DTM-SCS significantly decreased hypersensitivity after 48 hours of stimulation compared to Sham-SCS in PDPN animals, but at the same time did not affect escape latency in the MCAS. At the molecular level, Con-SCS resulted in a significant increase in spinal pro-inflammatory cytokine Tnf-α after 48 hours compared to DTM-SCS and Sham-SCS. In summary, Con-SCS showed a shift of the inflammatory balance towards a pro-inflammatory state whilst HF- and DTM-SCS shifted the balance towards an anti-inflammatory state. These findings suggest that the underlying mechanism of Con-SCS induced pain relief in PDPN differs from that induced by HF- and DTM-SCS.

Open Access
Relevant
Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain.

Background: Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. Methods: The current study included PWH with (n = 26), and without (n = 29), chronic pain. Participants completed a single session that lasted approximately 180min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). Results: We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. Conclusion: PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.

Open Access
Relevant
The rs216009 single-nucleotide polymorphism of the CACNA1C gene is associated with phantom tooth pain.

Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the CACNA1C gene, which encodes the α1C subunit of the Cav1.2 L-type Ca2+ channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the CACNA1C gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the CACNA1C gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca2+ influx from LTCCs, and the rs216009 polymorphism may be involved in CACNA1C expression, which regulates intracellular Ca2+ levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca2+ levels and affective pain systems, such as those that mediate fear memory recall.

Open Access
Relevant