6,188 publications found
Sort by
Cyanidin Ameliorates Bisphenol A-Induced Alzheimer's Disease Pathology by Restoring Wnt/β-Catenin Signaling Cascade: an In Vitro Study.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory loss and cognitive decline, linked to amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein accumulation in the brain. Environmental pollutant bisphenol A (BPA) has been implicated in AD pathology due to its neurotoxic effects. This study aims to evaluate cyanidin from flower bracts of Musa acuminata Colla (red variety; AAA group) for its neuroprotective properties against BPA-induced AD pathology. The extraction of cyanidin was optimized using 70% ethanol in acidified water, showing promising anti-acetylcholinesterase activity. Cyanidin was effectively purified from the resultant extract and characterized using spectroscopic techniques. Two gradient doses of cyanidin (90 and 10µg/ml) were determined based on cell viability assay. The role of cyanidin in promoting nerve growth and differentiation was assessed in PC12 cells for up to 72h. A discernible and statistically significant difference was assessed in neurite extension at both doses at 72h, followed by pre-treatment with cyanidin. BPA stimulation significantly increased the p-tau expression compared to the control (p < 0.0001). Pre-treatment with cyanidin reduced the tau expression; however, a significant difference was observed compared to control cells (p = 0.0003). Cyanidin significantly enhanced the mRNA expression of Wnt3a (p < 0.0001), β-catenin (p = 0.0004), and NeuroD1 (p = 0.0289), and decreased the expression of WIF1(p = 0.0040) and DKK1 (p < 0.0001), which are Wnt antagonist when compared to cells stimulated with BPA. Conclusively, our finding suggests that cyanidin could agonize nerve growth factor and promote neuronal differentiation, reduce tau-hyperphosphorylation by restoring the Wnt/β-catenin signaling cascade, and thereby render its neuroprotective potential against BPA-induced AD pathology.

Relevant
Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model.

Ketamine as a glutamate receptor antagonist has a rapid, potent, and long-lasting antidepressant effect, but its specific mechanism is still not fully understood. Depression is associated with elevated levels of glutamate and astrocyte loss in the brain; the exploration of the relationships between ketamine's antidepressant effect and astrocytes has drawn great attention. Astrocytes and aquaporin 4 (AQP4) are essential components of the glymphatic system, which is a brain-wide perivascular pathway to help transport nutrients to the parenchyma and remove metabolic wastes. In this study, we investigated pyroptosis-associated protein Nlrp3/Caspase-1/Gsdmd-N expression in the hippocampus of mice and the toxic effect of high levels of glutamate on primary astrocytes. On this basis, the protective mechanism of ketamine is explored. A single administration of ketamine (10 mg/kg) remarkably relieved anxious and depressive behaviors in the sucrose preference test, elevated plus maze test, and forced swim test. Meanwhile, ketamine reduced the level of hippocampus Nlrp3 and the expression of its downstream molecules in chronic unpredictable mild stress (CUMS) mice model by western blot and reduced the colocalization of Gfap and Gsdmd by nearly 25% via immunofluorescent staining. Ketamine also increased the Gfap-positive cells and AQP4 expression in the hippocampus of the CUMS mice. More important, ketamine increased the distribution of the fluorescent tracer of CUMS mice. Treatment with 128 mM glutamate in cortical and hippocampus astrocytes increased the level of Nlrp3, and Gsdmd-N, and ketamine alleviated high glutamate-induced pyroptosis-associated proteins. In summary, these results suggest that high glutamate-induced astrocyte pyroptosis through the Nlrp3/Caspase-1/Gsdmd-N pathway which was inhibited by ketamineandketamine can improve the damaged glymphatic function of the CUMS mice. The present study indicates that inhibiting astrocyte pyroptosis and promoting the glymphatic circulation function are a new mechanism of ketamine's antidepressant effect, and astrocyte pyroptosis may be a new target for other antidepressant medicines.

Relevant
Neuroimmune Connectomes in the Gut and Their Implications in Parkinson's Disease.

The gastrointestinal tract is the largest immune organ and it receives dense innervation from intrinsic (enteric) and extrinsic (sympathetic, parasympathetic, and somatosensory) neurons. The immune and neural systems of the gut communicate with each other and their interactions shape gut defensive mechanisms and neural-controlled gut functions such as motility and secretion. Changes in neuroimmune interactions play central roles in the pathogenesis of diseases such as Parkinson's disease (PD), which is a multicentric disorder that is heterogeneous in its manifestation and pathogenesis. Non-motor and premotor symptoms of PD are common in the gastrointestinal tract and the gut is considered a potential initiation site for PD in some cases. How the enteric nervous system and neuroimmune signaling contribute to PD disease progression is an emerging area of interest. This review focuses on intestinal neuroimmune loops such as the neuroepithelial unit, enteric glial cells and their immunomodulatory effects, anti-inflammatory cholinergic signaling and the relationship between myenteric neurons and muscularis macrophages, and the role of α-synuclein in gut immunity. Special consideration is given to the discussion of intestinal neuroimmune connectomes during PD and their possible implications for various aspects of the disease.

Relevant
Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury.

Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.

Relevant
Human Cerebrospinal Fluid Sample Preparation and Annotation for Integrated Lipidomics and Metabolomics Profiling Studies.

Cerebrospinal fluid (CSF) is a metabolically diverse biofluid and a key specimen for exploring biochemical changes in neurodegenerative diseases. Detecting lipid species in CSF using mass spectrometry (MS)-based techniques remains challenging because lipids are highly complex in structure, and their concentrations span over a broad dynamic range. This work aimed to develop a robust lipidomics and metabolomics method based on commonly used two-phase extraction systems from human CSF samples. Prioritizing lipid detection, biphasic extraction methods, Folch, Bligh and Dyer (B&D), Matyash, and acidified Folch and B&D (aFolch and aB&D) were compared using 150 μL of human CSF samples for the simultaneous extraction of lipids and metabolites with a wide range of polarity. Multiple chromatographical separation approaches, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and gas chromatography (GC), were utilized to characterize human CSF metabolome. The aB&D method was found as the most reproducible technique (RSD < 15%) for lipid extraction. The aB&D and B&D yielded the highest peak intensities for targeted lipid internal standards and displayed superior extracting power for major endogenous lipid classes. A total of 674 unique metabolites with a wide polarity range were annotated in CSF using, combining RPLC-MS/MS lipidomics (n = 219), HILIC-MS/MS (n = 304), and GC-quadrupole time of flight (QTOF) MS (n = 151). Overall, our findings show that the aB&D extraction method provided suitable lipid coverage, reproducibility, and extraction efficiency for global lipidomics profiling of human CSF samples. In combination with RPLC-MS/MS lipidomics, complementary screening approaches enabled a comprehensive metabolite signature that can be employed in an array of clinical studies.

Open Access
Relevant
HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism.

Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson's disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial. In this study, whether inflammation could induce iron dyshomeostasis in dopaminergic neurons through high mobility group protein B1 (HMGB1) in the early stage of PD is explored. Lipopolysaccharide (LPS), a toxin that primarily activates glia cells, and 6-hydroxydopamine (6-OHDA), the neurotoxin that firstly impacts dopaminergic neurons, were utilized to mimic PD in rats. We found a common and exceedingly early over-production of HMGB1, followed by an increase of divalent metal transporter 1 with iron responsive element (DMT1+) in the dopaminergic neurons before quantifiable neuronal loss. HMGB1 neutralizing antibody suppressed inflammation in the SN, DMT1+ elevation in dopaminergic neurons, and dopaminergic neuronal loss in both LPS and 6-OHDA administration-induced PD models. On the contrary, interleukin-1β inhibitor diacerein failed to suppress these outcomes induced by 6-OHDA. Our findings not only demonstrate that inflammation could be one of the causes of DMT1+ increase in dopaminergic neurons, but also highlight HMGB1 as a pivotal early mediator of inflammation-induced iron increase and subsequent neurodegeneration, thereby HMGB1could serve as a potential target for early-stage PD treatment.

Relevant
Hsa-miR-877-5p Expression in Acute Ischemic Stroke Based on Bioinformatics Analysis and Clinical Validation.

Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.

Relevant
Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer's Disease.

Alzheimer's disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood-brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer's disease.

Relevant
Comprehensive Risk Assessment of Infection Induced by SARS-CoV-2.

The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.

Relevant
Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis.

The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.

Open Access
Relevant