8,918 publications found
Sort by
Behaviour of texture-modified meats using proteolytic enzymes during gastrointestinal digestion simulating elderly alterations.

This study aimed to apply different proteolytic enzymes (bromelain, papain, and flavourzyme) to develop texture-modified meats suitable for people with chewing or swallowing problems. The samples were categorised at level 6 (soft and bite-sized food) of the dysphagia diet, characterised in terms of physicochemical and textural parameters, and evaluated for their behaviour during gastrointestinal digestion simulating elderly alterations. In general, the enzyme-treated samples had lower moisture content, weight, and diameter of the piece of meat, and presented colour differences compared to the control samples. Textural analyses did not show significant differences in terms of hardness and cohesiveness for the texture-modified meats, while flavourzyme-treated samples presented less elasticity. Instrumental mastication assay showed the breakdown of samples' structure mainly during the first mastication cycles, with flavourzyme-treated samples presenting slightly higher consistency. The protein digestibility of the meats greatly increased after simulated gastrointestinal digestion, but a decrease in proteolysis for the control and papain-treated samples in the altered gastric model and an increase for flavourzyme-treated samples in the altered both gastric and intestinal model were shown compared to standard conditions. These results allow integrating knowledge to design foods that better meet the requirements of dysphagics or elderly people.

Open Access Just Published
Relevant
Compact imaging system and deep learning based segmentation for objective longissimus muscle area in Korean beef carcass.

With growing consumer interest in meat quality, the need for accurate quality assessment becomes increasingly important. One crucial factor of Korean beef quality is the longissimus muscle area, which is closely associated with both quality and yield grade. Currently, the measurement is visually assessed, introducing subjectivity and placing a substantial burden on inspectors in terms of labor. To address these challenges, we have developed a compact image acquisition system designed to acquire accurate grading assessment images of beef carcasses. Several preprocessing steps after image acquisition were conducted, including radial distortion correction and color calibration. We have employed conventional image-processing techniques and four deep-learning models to segment the longissimus muscle area using the calibrated images. Among the segmentation models, DeepLab model based on ResNet50 achieved the highest accuracy. It demonstrated a Global Accuracy, Weighted IoU, and Mean BF Score of approximately 99.26%, 98.54%, and 95.70%, respectively. The results of our study are expected to contribute to the development of objective criteria for loin area assessment. By enabling precise and consistent determination of beef carcass quality, our research has the potential to reduce labor requirements for inspectors and provide a standardized approach to assessing loin area.

Just Published
Relevant
Assessing consumers' preferences for beef and lamb meat linked to wildfire prevention services.

Meat from silvopastoral systems, due to its provision of numerous ecosystem services such as wildfire risk reduction in Mediterranean forests, can address societal growing demands for meat produced with lower environmental impacts. Differentiation of meat from these systems may contribute to their economic sustainability and hence to reverse their decline in the Mediterranean. This study investigated consumer preferences and willingness-to-pay (WTP) for beef and lamb meat from silvopastoral systems associated to the provision of wildfire prevention service and explored two alternative ways of labelling this service. Through a choice experiment survey considering type of pasture, length of grazing period, production distance and price, we gathered data from 1209 meat consumers in two Spanish cities. We considered forest grazing with a target purpose as a level in the type of pasture attribute and it was presented either as grazing to prevent wildfires or grazing to reduce biomass in two alternative versions of the valuation survey. The random parameter logit model revealed the highest preferences and WTP towards nearby production distances, followed by targeted grazing and forest grazing, while the length of grazing period was less relevant. No significant differences in consumers WTP were found between conveying targeted grazing either as fire prevention or biomass reduction. Our findings also suggest that consumers' preferences varied with location, attitudes towards local food and environmental role of grazing and consumption habits. Knowledge gathered in our work contributes to understand consumers perceptions on the beneficial environmental impacts of meat production.

Just Published
Relevant
Generation of kokumi γ-glutamyl short peptides in Spanish dry-cured ham during its processing.

The typical dry-cured ham flavor is rich in umami and brothy perceptions, for which short peptides may contribute. Particularly, γ-glutamyl peptides could be the responsible of these previously reported attributes, as they exert a synergistic interaction with other basic tastes and modify the intensity of salty, sweet, and umami tastes. The content of peptides has been reported to evolve along the processing, but no kokumi γ-glutamyl peptides have been identified in Spanish dry-cured hams yet. In this research, nine γ-glutamyl dipeptides (γ-EA, γ-EC, γ-EE, γ-EF, γ-EL, γ-EM, γ-EV, γ-EW, and γ-EY) and two γ-glutamyl tripeptides (GSH and γ-EVG) have been quantitated at 6, 12, 18 and 24months of traditional processing of Spanish dry-cured ham by performing a Q Exactive Orbitrap-based tandem mass spectrometry. The results show an increase of γ-EA, γ-EE, γ-EF, γ-EL, γ-EM and γ-EVG, obtaining maximums at 24months of curing ranging from 0.14 (γ-EVG) to 18.86 (γ-EL) μg/g dry-cured ham. Otherwise, γ-EV, γ-EW and γ-EY accumulated until the 18th month of storage to 15.10, 0.54 and 3.17μg/g dry-cured ham, respectively; whereas γ-EC and GSH amounts decreased starting from 0.0676 and 4.41μg/g dry-cured ham, respectively at earlier stages. The concentration dynamics of these compounds may be linked with proteolytic and oxidative reactions during processing. In addition, due to their synergistic effect on kokumi activity, this could constitute insights of the brothy perceptions of dry-cured ham, and these peptides probably contribute to the sensory differences existing in long processed Spanish dry-cured hams.

Open Access Just Published
Relevant
The color of fresh pork: Consumers expectations, underlying farm-to-fork factors, myoglobin chemistry and contribution of proteomics to decipher the biochemical mechanisms.

The color of fresh pork is a crucial quality attribute that significantly influences consumer perception and purchase decisions. This review first explores consumer expectations and discrimination regarding pork color, as well as an overview of the underlying factors that, from farm-to-fork, contribute to its variation. Understanding the husbandry factors, peri- and post-mortem factors and consumer preferences is essential for the pork industry to meet market demands effectively. This review then delves into current knowledge of pork myoglobin chemistry, its modifications and pork discoloration. Pork myoglobin, which has certain peculiarities comparted to other meat species, plays a weak role in determining pork color, and a thorough understanding of the biochemical changes it undergoes is crucial to understand and improve color stability. Furthermore, the growing role of proteomics as a high-throughput approach and its application as a powerful research tool in meat research, mainly to decipher the biochemical mechanisms involved in pork color determination and identify protein biomarkers, are highlighted. Based on an integrative muscle biology approach, the available proteomics studies on pork color have enabled us to provide the first repertoire of pork color biomarkers, to shortlist and propose a list of proteins for evaluation, and to provide valuable insights into the interconnected biochemical processes implicated in pork color determination. By highlighting the contributions of proteomics in elucidating the biochemical mechanisms underlying pork color determination, the knowledge gained hold significant potential for the pork industry to effectively meet market demands, enhance product quality, and ensure consistent and appealing pork color.

Just Published
Relevant
Supplementation of chestnut tannins in diets can improve meat quality and antioxidative capability in Hu lambs.

Chestnut tannins (CNT), as a source of hydrolyzable tannins, positively affect the antioxidant status of livestock. In the current study, 90 male Hu lambs were used to investigate the effect of dietary CNT intake on growth performance, nutrient digestibility, meat quality and oxidative stability, rumen microbial, and the transcriptomes of muscle and liver. A completely randomized design with three CNT intake levels (0, 0.3%, and 0.6%) was used. Rumen microbial and nutrient digestibility were not significantly altered by CNT intake. Diets with 0.3% CNT intake significantly reduced the shear force, yellowness at 24h, and C20:2 polyunsaturated fatty acids of lamb meat and malondialdehyde in serum and longissimus thoracis (LT) muscle. Meanwhile, the 0.3% CNT diet significantly increased average daily gain during the 1-21days and 64-90days, dry matter intake during the 1-21days, the slaughter weight, and liver index of lambs. The 0.3% CNT diet significantly increased C26:0 saturated fatty acids, total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase in LT muscle. The meat shelf life of 0.3% CNT and 0.6% CNT groups was prolonged by 8.7h and 5.4h, respectively. Transcriptomic analysis revealed that CNT supplementation can induce the expression of antioxidant enzyme gene (CAT, SOD1), and the differentially expressed genes were mainly involved in antioxidant activity, transferase activity, and adenosine triphosphate binding. These results suggest that 0.3% CNT intake can relieve the oxidative stress of lambs, and improve the stability of meat color and meat tenderness, due to the enhanced antioxidative capacity.

Just Published
Relevant