2,623 publications found
Sort by
CaMKII inhibition due to TRIC-B loss-of-function dysregulates SMAD signaling in osteogenesis imperfecta

Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+ flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signalling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signalling and to a less extend by a lower TGF-β reservoir. SMAD signalling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-β treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signalling in bone.

Matricellular proteins in atherosclerosis development

The extracellular matrix (ECM) is an intricate network composed of various multi-domain macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable composite, contributing to the mechanical properties of tissue. However, matricellular proteins are non-structural, secretory extracellular matrix proteins, which modulate various cellular functions via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, adhesion, migration, and several signal transduction pathways. Matricellular proteins display a broad functionality regulated by their multiple structural domains and their ability to interact with different extracellular substrates and/or cell surface receptors. The expression of these proteins is low in adults, however, gets upregulated following injuries, inflammation, and during tumor growth. The marked elevation in the expression of these proteins during atherosclerosis suggests a positive association between their expression and atherosclerotic lesion formation. The role of matricellular proteins in atherosclerosis development has remained an area of research interest in the last two decades and studies revealed these proteins as important players in governing vascular function, remodelling, and plaque formation. Despite extensive research, many aspects of the matrix protein biology in atherosclerosis are still unknown and future studies are required to investigate whether targeting pathways stimulated by these proteins represent viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review summarizes the characteristics of distinct matricellular proteins, discusses the available literature on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new avenues for future research.

Tissue-specific collagen hydroxylation at GEP/GDP triplets mediated by P4HA2

Collagen, the most abundant organic compound of vertebrate organisms, is a supramolecular, protein-made polymer. Details of its post-translational maturation largely determine the mechanical properties of connective tissues. Its assembly requires massive, heterogeneous prolyl-4-hydroxylation (P4H), catalyzed by Prolyl-4-hydroxylases (P4HA1-3), providing thermostability to its elemental, triple helical building block. So far, there was no evidence of tissue-specific regulation of P4H, nor of a differential substrate repertoire of P4HAs. Here, the post-translational modifications of collagen extracted from bone, skin, and tendon were compared, revealing lower hydroxylation of most GEP/GDP triplets, together with fewer other residue positions along collagen a chains, in the tendon. This regulation is mostly conserved in two distant homeotherm species, mouse and chicken. The comparison of detailed P4H patterns in both species suggests a two-step mechanism of specificity. P4ha2 expression is low in tendon and its genetic invalidation in the ATDC5 cellular model of collagen assembly specifically mimics the tendon-related P4H profile. Therefore, P4HA2 has a better ability than other P4HAs to hydroxylate the corresponding residue positions. Its local expression participates in determining the P4H profile, a novel aspect of the tissue specificities of collagen assembly.

Open Access
Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway

Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.

Echinatin maintains glutathione homeostasis in vascular smooth muscle cells to protect against matrix remodeling and arterial stiffening

Decreased vascular compliance of the large arteries as indicated by increased pulse wave velocity is shown to be associated with atherosclerosis and the related cardiovascular events. The positive correlation between arterial stiffening and disease progression derives a hypothesis that softening the arterial wall may protect against atherosclerosis, despite that the mechanisms controlling the cellular pathological changes in disease progression remain unknown. Here, we established a mechanical-property-based screening to look for compounds alleviating the arterial wall stiffness through their actions on the interaction between vascular smooth muscle cells (VSMCs) and the wall extracellular matrix (ECM). We found that echinatin, a chalcone preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata), reduced the stiffness of ECM surrounding cultured VSMCs. We examined the potential beneficial effects of echinatin on mitigating arterial stiffening and atherosclerosis, and explored the mechanistic basis by which the compound exert the effects. Administration of echinatin in mice fed on an adenine diet and in hyperlipidemia mice subjected to 5/6 nephrectomy mitigated arterial stiffening and atherosclerosis. Mechanistic insights were gained from the RNA-sequencing results showing that echinatin upregulated the expression of glutamate cysteine ligases (GCLs), both the catalytic (GCLC) and modulatory (GCLM) subunits. Further study indicated that upregulation of GCLC/GCLM in VSMCs by echinatin maintains the homeostasis of glutathione (GSH) metabolism; adequate availability of GSH is critical for counteracting arterial stiffening. As a consequence of regulating the GSH synthesis, echinatin inhibits ferroptosis and matrix remodeling that being considered two contributors of arterial stiffening and atherosclerosis. These data demonstrate a pivotal role of GSH dysregulation in damaging the proper VSMC-ECM interaction and uncover a beneficial activity of echinatin in preventing vascular diseases.

Dual role of enhancer of zeste homolog 2 in the regulation of ultraviolet radiation-induced matrix metalloproteinase-1 and type I procollagen expression in human dermal fibroblasts

Abnormalities in the extracellular matrix (ECM) caused by ultraviolet (UV) radiation are mediated by epigenetic mechanisms. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is implicated in inflammation, immune regulation, and senescence. However, its role in controlling UV-induced ECM alterations in the skin remains elusive. Here, we investigated the role of EZH2 in UV-induced expression of matrix metalloproteinase (MMP)-1 and type I procollagen. We found that UV induced EZH2 expression in human skin in vivo and in human dermal fibroblasts (HDFs). EZH2 knockdown reduced the expression and promoter activity of MMP-1 and increased those of type I procollagen, whereas EZH2 overexpression had the opposite effects. Mechanistically, EZH2 increased NF-κB activity, and p65 and p50 expression and promoter activity. Intriguingly, chromatin immunoprecipitation assays revealed that the EZH2/p65/p50 complex was recruited and bound to the MMP-1 promoter after UV irradiation, independent of its histone methyltransferase activity. In contrast, EZH2-induced DNA methyltransferase 1 (DNMT1) formed a complex with EZH2 and enhanced the enrichment of H3K27me3 on the COL1A2 promoter following UV irradiation. These findings indicate that EZH2 plays a dual role in regulating MMP-1 and type I procollagen expression and improve our understanding of how this epigenetic mechanism contributes to UV-induced skin responses and photoaging. This study shows that inhibiting EZH2 is a potential anti-aging strategy for preventing UV-induced skin aging by reducing MMP-1 expression and inducing type I procollagen expression.