3,099 publications found
Sort by
Design of benzimidazoles, benzoxazoles, benzothiazoles and thiazolopyridines as leukotriene A4 hydrolase inhibitors through 3D-QSAR, docking and molecular dynamics

Human leukotriene A4 hydrolase enzyme (LTA4H) catalyses the biotransformation of the inactive precursor leukotriene A4 (LTA4) to the bioactive Leukotriene B4 (LTB4), which causes many inflammatory responses in the human body. Therefore, the selective inhibition of this enzyme becomes a useful strategy for the treatment of several illnesses such as asthma, allergic rhinitis, cardiovascular diseases, and cancer. Herein we report a 3D-QSAR/ /CoMFA and CoMSIA study on a series of 47 benzimidazoles, benzoxazoles, benzothiazoles and thiazolopyridines reported as potent LTA4H inhibitors. Good statistical parameters were obtained for the best model (q2 = 0.568, r2 ncv = 0.891 and r2 test = 0.851). A new series of 10 compounds capable of inhibiting leukotriene A4 hydrolase with high potency was presented. All designed inhibitors showed low IC50 in nano- and sub-nanomolar ranges, when they were evaluated in 3D-QSAR models. Subsequently, the designed molecules, as well as the least and most active compounds were subjected to docking and molecular dynamics studies into LTA4H. In conclusion, we summarised a thorough structure?activity relationship (SAR) of LTA4H inhibitors of heterocyclic structure. These models can be used for the rational proposal of new inhibitors.

Open Access
Relevant
Application of liquid chromatography in defining the interaction of newly synthesized chalcones and related compounds with human serum albumin

Defining the interaction of newly synthesized compounds with plasma proteins is an important step in the drug development process. Chromatographic techniques can be successfully used in predicting the biopharmaceutical and pharmacokinetic properties of newly synthesized compounds. The aim of this study is to investigate and isolate the most important molecular properties that affect the interaction of 20 newly synthesized chalcones and commercial compounds (lopinavir, ritonavir, darunavir and ivermectin) with human serum albumin (HSA). The retention behaviour of the selected compounds was tested on a CHIRALPAK?HSA column. A mixture of phosphate buffer (pH 7.0) and isopropanol (80:20 volume ratio) was used as the mobile phase, and the support vector method was used to form the quantitative structure retention relationship (QSRR) model. Based on the obtained values of retention parameters, it was observed that halogenated derivatives show the strongest, and methylated chalcone derivatives the weakest interaction with HSA. By correlating the retention and physicochemical properties of the tested compounds, it was shown that the structural (SDSCH) and electronic properties (MAXQ, EEM_F1) groups have the greatest influence on the retention behaviour and the interaction of the tested compounds with HSA. The obtained QSRR model can be applied in the prediction of the retention characteristics of new, structurally related chalcone derivatives on HSA stationary phase.

Open Access
Relevant
Diversifying the chloroquinoline scaffold against SARS-COV-2 main protease: Virtual screening approach using cross-docking, sitemap analysis and molecular dynamics simulation

The absence of designated remedies for coronavirus disease 19 (Covid-19) and the lack of treatment protocols drove scientists to propose new small molecules and to attempt to repurpose existing drugs against various targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in order to bring forward efficient solutions. The main protease (Mpro) is one of the most promising drug targets due to its crucial role in fighting viral replication. Several antiviral drugs have been used in an attempt to overcome the pandemic, such as hydroxychloroquine (HCQ). Despite its perceived positive outcomes in the beginning of the disease, HCQ was associated with several drawbacks, such as insolubility, toxicity, and cardiac adverse effects. Therefore, in the present study, a structure-based virtual screening approach was performed to identify structurally modified ligands of the chloroquinoline (CQ) scaffold with good solubility, absorption, and permeation aimed at eventually suggesting a more dependable alternative. PDB ID:7BRP Mpro was chosen as the most reliable receptor after cross-docking calculation using 30 crystal structures. Then, a SiteMap analysis was performed and a total of 231,456 structurally modified compounds of the CQ scaffold were suggested. After Lipinski criteria filtration, 64,312 molecules were docked and their MM-GBSA free binding energy were calculated. Next, ADME descriptors were calculated, and 12 molecules with ADME properties better than that of HCQ were identified. The resulting molecules were subjected to molecular dynamics (MD) simulation for 100 ns. The results of the study indicate that 3 molecules (CQ_22; CQ_2 and CQ_5) show better interactions and stability with the Mpro receptor. Binding interaction analysis indicates that GLU143, THR26, and HIS41 amino acids are potential binding hot-spot residues for the remaining 3 ligands.

Open Access
Relevant
Post-TRIzol protein extraction from peripheral blood mononuclear cells

After sample processing for RNA and DNA analysis, the leftover protein pellets are usually discarded due to the limited efficiency of pellet reconstitution/solubilisation. As the pelleted proteins are tightly packed, they are most often solubilised using chaotropic agents (e.g., guanidine hydrochloride or urea), detergents (e.g., SDS), salts (NaCl) or basic buffer (Tris). The aim of this study was to define and optimise the procedure for the efficient extraction of proteins from human peripheral blood mononuclear cells (PBMCs), obtained by a single blood draw and lysed in TRIzol reagent, by varying experimental conditions in terms of protein precipitation solvent (isopropanol or acetone), washing (with or without guanidine hydrochloride) and solubilisation solution (containing SDS, NaCl, urea and/or Tris). We evaluated the efficacy of the final, optimised protocol to solubilise both small cytoplasmic and larger transmembrane proteins, and the compatibility with methods employed for the subsequent analysis of protein posttranslational modifications, such as glycosylation. The optimised protocol for the extraction and isolation of post-TRIzol leftover proteins from PBMCs can be defined as follows: protein precipitation from the organic phase with ice-cold acetone, pellet washing with absolute ethanol and solubilisation in 1 % SDS, employing 20 min heating at 50?C and vortexing.

Open Access
Relevant
Application aspects of joint anaphoresis/substrate anodization in production of biocompatible ceramic coatings

Electrophoretic deposition (EPD) occurs as a cataphoretic deposition ? the coating is deposited on the cathode, and anaphoretic deposition ? the coating is deposited on the anode. The primary purpose of EPD is to obtain compact and uniform organic/inorganic coatings of the desired thickness and adhesion on metal surfaces by applying an electric field to the particles of coating precursor. EPD basic principles for coatings deposition concerning fundamental explanations and considerations of practical parameters of the process are presented. Cataphoretic deposition has become popular because it can apply organic coatings to complex structures that are otherwise very difficult to coat. These coatings were found to improve the characteristics of the substrate, such as biocompatibility, appearance and resistance to the corrosion processes. The key EPD parameters are composition, pH value and viscosity of deposition medium, as well as zeta potential of the particles, electric field strength, etc. A special survey is given to the process of anaphoretic deposition, which is relatively new, and its advantages over cataphoretic deposition are discussed. Through the process of joint anaphoresis/substrate anodization process, the surface of the substrate is simultaneously anodized and modified by incorporation of the foreign particles into the anodic layer. The coatings of mixed composition of better adhesion and corrosion resistance with respect to cataphoretically- deposited coatings are obtained as result.

Open Access
Relevant