9,727 publications found
Sort by
Comparison of Corcos-Based and Experimentally Derived Coherence Factors for Buffet Forcing Functions

In this paper, high-spatial-resolution unsteady pressure-sensitive paint (UPSP) data are utilized to compare two methods for panel buffet forcing function (BFF) estimation for the Space Launch System (SLS). Such methods are based on discrete pressure measurements within a panel but employ coherence factors to account for partially correlated fluctuating pressures across the whole panel. In one method, coherence factors are derived based on the Corcos model, whereas the second method utilizes experimentally derived coherence factors. To simulate discrete measurements using UPSP data, suitable subsets of the data are extracted. When full UPSP resolution is retained, UPSP data provide a benchmark to assess discrete-measurement-based methods. The analysis focuses on the peak SLS buffet environment located downstream of the forward attachment hardware (FAH) between the core stage and solid rocket boosters. Trends of the Corcos-based and experimentally derived coherence factors are in reasonable agreement with the benchmark. However, at certain frequencies, experimentally derived coherence factors are sensitive to the separation distance between pressure measurements utilized to compute coherence lengths. Such sensitivity originates from deviation of the experimentally based coherence function from an exponential decay assumption. On the other hand, the present implementation of the Corcos model fails to capture certain nonturbulent boundary-layer-related environments, such as a subharmonic of FAH vortex shedding. For all methods presented in this paper, at near-transonic conditions, increased pressure coherence and spatial nonuniformity lead to BFF overestimation and sensitivity to the pressure measurement location within the panel.

Relevant
Mission Profile Analysis of Point-to-Point Rocket Cargo Transportation System Using Trajectory Optimization

This paper proposes new concepts for the point-to-point rocket cargo transportation system (RCTS). The RCTS is a transportation system that can deliver cargo anywhere on Earth in an hour using reusable launch vehicle technologies. As a fundamental study of global transportation on Earth, we especially address the mission profiles for short-range transportation within hundreds of kilometers using small rocket engines, which are intended for logistics transportation within neighboring countries or domestic transportation in a country. Two mission profiles of the RCTS are introduced, and the flight phases of each concept are explained in detail. The trajectory optimization problem of the RCTS is formulated based on the mission profiles, incorporating the flight constraints, boundary conditions, and an objective function that aims to maximize the payload ratio. The explicit-guidance is employed during the landing burn phase to enhance the convergence of the optimization problem by expanding the feasible region. The coevolutionary augmented Lagrangian method, one of the evolutionary algorithms, is utilized to obtain the solution for the trajectory optimization problem. The optimal trajectory and state variables are presented through numerical simulations. Additionally, parametric studies are performed to determine the payload mass trend of the RCTS. The trajectory optimization results are summarized to provide an analysis and comparison of the proposed mission profiles.

Relevant
Mesh-Based Two-Step Convex Optimization for Spacecraft Landing Trajectory Planning on Irregular Asteroid

The problem investigated in this paper is how to rapidly optimize a landing trajectory on an arbitrarily shaped asteroid, subject to practical constraints and a gravitational model suitable for irregular asteroids. The fundamental idea is to convert the nonlinearity involved in the gravitational field into an equivalent convex version and further generate the optimal trajectory using the two-step convex optimization technique to achieve efficient and robust computation. For a given mission area, the positional space is discretized as an exactly sufficient number of small tetrahedron meshes, within which the real gravitations are interpolated as the linear gravitational representation with nonconvex mesh tracking constraints. A solution space relaxation–penalization technique is proposed to convexify the mesh tracking constraints and keep the feasibility of the resulting convex optimization problem. A series of optimal active meshes are generated by solving this problem and transcribed as corresponding convex active meshing constraints, and further imposing them on the landing trajectory to construct the final convex optimization problem equaling to the original problem. The strength and correctness of this method are demonstrated from both perspectives of theoretical analyses and numerical simulations for landing on 4769 Castalia asteroid, with the comparisons of the state-of-the-art convex-optimization-based methods.

Relevant
Space Launch System Unsteady Forces Developed from Unsteady-Pressure-Sensitive-Paint–Based Corcos Model Parameters

During atmospheric ascent, launch vehicles (LVs) experience large dynamic loads at transonic conditions where aerodynamic buffet is most critical. To estimate buffet loads, coupled loads analyses typically utilize suitable forcing functions, called buffet forcing functions (BFFs). One of the key buffet environment contributors is the turbulent boundary layer (TBL) acting on the LV outer skin. The cross-spectral density function of TBL-induced fluctuating pressures can be estimated using the widely accepted Corcos model. In the context of transonic buffet, the performance of this model is not well established, partly because of lack of data. To fill this gap, NASA recently acquired extremely high-spatial-density data for the Space Launch System vehicle using the unsteady-pressure-sensitive-paint (uPSP) optical measurement technique. A methodology is developed for extraction of the Corcos model parameters using these unique data, with a focus on the LV design application. The model hypotheses are verified, and the model parameters are empirically tuned. For selected panels on the vehicle, force coherence factors are derived based on the Corcos model, and the associated panel BFFs are compared to uPSP data. It is shown that the modeled BFFs are in agreement with direct integration of uPSP data, except for regions where pressure fluctuations are spatially nonuniform. In those regions, the Corcos-based BFFs exhibit inherent limitations of BFF estimation methods that rely on discrete pressure measurements. Lastly, extending the present implementation of the Corcos model to frequencies impacted by vortex-shedding phenomena can result in underconservative BFF estimates at the subharmonic of the vortex shedding.

Relevant