2,266 publications found
Sort by
A new mathematical model of phyllotaxis to solve the genuine puzzle spiromonostichy.

Arrangement of plant leaves around the stem, termed phyllotaxis, exhibits beautiful and mysterious regularities and has been one of the most attractive subjects of biological pattern formation. After the long history of studies on phyllotaxis, it is now widely accepted that the inhibitory effect of existing leaf primordia on new primordium formation determines phyllotactic patterning. However, costoid phyllotaxis unique to Costaceae of Zingiberales, displaying spiromonostichy characterized by a steep spiral with a small divergence angle, seems to disagree with the inhibitory effect-based mechanism and has remained as a "genuine puzzle". We developed a new mathematical model, hypothesizing that each leaf primordium exerts not only the inhibitory effect but also some inductive effect. Computer simulations with the new model successfully generated a spiromonostichous pattern when these two effects met a certain relationship. The obtained spiromonostichy matched the real costoid phyllotaxis observed with Costus megalobractea, particularly for the decrease of the divergence angle associated with the enlargement of the shoot apical meristem. The new model was also shown to be able to produce a one-sided distichous pattern that is seen in phyllotaxis of a few plants of Zingiberales and has never been addressed in the previous model studies. These results implicated inductive as well as inhibitory mechanisms in phyllotactic patterning, at least in Zingiberales.

Open Access
Relevant
Simultaneous analysis of shape and internal structure of a curved Hibiscus cannabinus pulvinus: X-ray microtomography and semi-automated quantification.

In the Malvaceae family, dynamic solar tracking by leaves is actuated by the deformation of the pulvinus, a thickened region at the leaf blade-petiole junction. While the internal structure is believed to play a crucial role in this process, experimental verification has been challenging due to technical limitations. To address this gap, we developed a semi-automated workflow, which integrates data analysis and image processing to simultaneously analyze the shape and internal structure of a Malvaceae pulvinus using X-ray microtomography. Firstly, we found that kenaf (Hibiscus cannabinus L.), a Malvaceae species with curved pulvini, exhibited solar-tracking leaf movement and selected it as a model system. We employed diffusible iodine-based contrast-enhanced computed tomography to visualize the internal structure of the kenaf pulvinus. Analysis of the pulvini's shape revealed variations in pulvinus morphology, yet plausible prediction of the centerline was accomplished using polar polynomial regression. Upon slicing the pulvini perpendicular to the centerline, we observed distinct gray value gradients along the proximo-distal and adaxial-abaxial axes, challenging threshold-based tissue segmentation. This workflow successfully generated three modified 3D images and derived quantitative parameters. Using these quantitative parameters, we conducted network analysis and found the linkage between the size-normalized cortex cross-sectional area and curvature. Polynomial least absolute shrinkage and selection operator (LASSO) regression revealed the relationship between the size-normalized cortex cross-sectional area and curvature commonly in all three tested samples. This workflow enables simultaneous analysis of the shape and internal structure, significantly improving the reproducibility of Malvaceae leaf pulvinus characterization.

Relevant
Leaf morphometric analysis and potential distribution modelling contribute to taxonomic differentiation in the Quercus microphylla complex.

Mexico is a major center of evolutionary radiation for the genus Quercus, with oak species occurring across different habitat types and showing a wide variation in morphology and growth form. Despite representing about 20% of Mexican species, scrub oaks have received little attention and even basic aspects of their taxonomy and geographic distribution remain unresolved. In this study, we analyzed the morphological and climatic niche differentiation of scrub oak populations forming a complex constituted by six named species, Quercus cordifolia, Quercus frutex, Quercus intricata, Quercus microphylla, Quercus repanda, Quercus striatula and a distinct morphotype of Q. striatula identified during field and herbarium work (hereafter named Q. striatula II). Samples were obtained from 35 sites covering the geographic distribution of the complex in northern and central Mexico. Morphological differentiation was analyzed through geometric morphometrics of leaf shape and quantification of trichome traits. Our results indicated the presence of two main morphological groups with geographic concordance. The first was formed by Q. frutex, Q. microphylla, Q. repanda and Q. striatula, distributed in the Trans-Mexican Volcanic Belt, the Sierra Madre Occidental and a little portion of the south of the Mexican Altiplano (MA). The second group consists of Q. cordifola, Q. intricata and Q. striatula II, found in the Sierra Madre Oriental and the MA. Therefore, our evidence supports the distinctness of the Q. striatula II morphotype, indicating the need for a taxonomic revision. Within the two groups, morphological differentiation among taxa varied from very clear to low or inexistent (i.e. Q. microphylla-Q. striatula and Q. cordifolia-Q. striatula II) but niche comparisons revealed significant niche differentiation in all pairwise comparisons, highlighting the relevance of integrative approaches for the taxonomic resolution of complicated groups such as the one studied here.

Open Access
Relevant
Plasmodesmata callose binding protein 2 contributes to the regulation of cambium/phloem formation and auxin response during the tissue reunion process in incised Arabidopsis stem.

Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.

Open Access
Relevant
Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress.

Salinity is among the harshest environmental stress conditions that negatively affects productivity of salt-sensitive rice. Since, germination is the most crucial phase in the life-cycle of plants, the present study was carried out to study the morpho-physiological traits associated with salinity stress. Evaluation of tolerance in four contrasting rice genotypes was assessed on the basis of specific morpho-physiological parameters including radicle emergence, seedling vigour index, germination index, mean germination time, radicle and plumule growth and seedling water uptake. Largely, our findings revealed that mean germination time (MGT) and seedling vigour index (SVI) are fast-screening procedures to test seedling performance in salt stress conditions. Salt sensitive genotypes showed higher MGT and lower SVI, confirming that these indices are good indicators of poor germination response. Salt-tolerant genotypes were shown to be inhibited to a lesser extent in alpha-amylase activity in spite of high concentrations of imposed NaCl stress, that correlated with better regulation of water-uptake and increased accumulation of total soluble sugar content. Exogenous supplementation of soluble sugars improved the germination rate in a salt sensitive genotype, Jyothi, confirming the importance of soluble sugars in signaling under NaCl stress conditions. Increased total phenols and flavonoids were observed to be relative to higher Total Antioxidant Capacity in salt tolerant genotypes underlying the significance of seed phenolic compounds in early germination response in NaCl stress conditions. Kagga, a landrace grown in coastal Karnataka performed comparably with that of salt tolerant rice, Pokkali. In conclusion, the determination of early seedling response may be utilized as a useful strategy to uncover genetic variation in rice germplasm to salinity stress.

Relevant
Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution.

In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.

Open Access
Relevant
Long-and short-billed hummingbirds as pollinators of Palicourea demissa, a distylous treelet of Neotropical cloud forests.

Distyly has been interpreted as a mechanism that promotes cross-pollination between floral morphs. According to this hypothesis, pollen from anthers positioned at different heights could adhere to different body parts of the pollinator that would correspond to those points where stigmas of compatible morph contact the animal. In this regard, hummingbird species with different bill sizes may play different roles as pollinators of each morph. If pollinators mobilize more legitimate pollen towards one of the two morphs, gender specialization may occur. This work aimed to assess experimentally the role of long- and short-billed hummingbirds as pollinators of short-style (SS) and long-style (LS) flowers of Palicourea demissa, a distylous, hummingbird-pollinated treelet in Venezuelan cloud forests. Flowers were emasculated and exposed to a single visit of the hummingbird Coeligena torquata (long-billed), Heliangelus spencei (short-billed) or Adelomyia melanogenys (short-billed). Later, stigmas were removed, and pollen load counted under a microscope to calculate the probability of legitimate- and illegitimate-pollen transfer by hummingbirds. The probability analyses of pollen transference showed that short-billed hummingbirds have higher pollination probabilities from SS-anthers to LS- and SS-stigmas, and from LS-anther to LS-stigmas than from LS-anther to SS-stigmas. In contrast, long-billed hummingbirds have higher probabilities of pollen transference from LS-anthers to SS-stigmas than in other directions. A deeper view of the sexual expression of each morph in P. demissa will depend on future studies that determine possible morpho-differences in the biological function of male and female floral structures, and the role played by less frequent floral visitors as mediators of legitimate pollination between floral morphs.

Relevant