707 publications found
Sort by
Infrastructure sensor-based cooperative perception for early stage connected and automated vehicle deployment

Infrastructure-based sensors provide a potentially promising solution to support the wide adoption of connected and automated vehicles (CAVs) technologies at an early stage. For connected vehicles with lower level of automation that do not have perception sensors, infrastructure sensors will significantly boost its capability to understand the driving context. Even if a full suite of sensors is available on a vehicle with higher level of automation, infrastructure sensors can support overcome the issues of occlusion and limited sensor range. To this end, a cooperative perception modeling framework is proposed in this manuscript. In particular, the modeling focus is placed on a key technical challenge, time delay in the cooperative perception process, which is of vital importance to the synchronization, perception, and localization modules. A constant turn-rate velocity (CTRV) model is firstly developed to estimate the future motion states of a vehicle. A delay compensation and fusion module is presented next, to compensate for the time delay due to the computing time and communication latency. Last but not the least, as the behavior of moving objects (i.e., vehicles, cyclists, and pedestrians) is nonlinear in both position and speed aspects, an unscented Kalman filter (UKF) algorithm is developed to improve object tracking accuracy considering communication time delay between the ego vehicle and infrastructure-based LiDAR sensors. Simulation experiments are performed to test the feasibility and evaluate the performance of the proposed algorithm, which shows satisfactory results.

Relevant
Modeling of shared mobility services - An approach in between aggregate four-step and disaggregate agent-based approaches for strategic transport planning

Shared mobility services are slowly penetrating European cities. Hence, transport models that are capable of modeling them are fundamental, to support policy-makers for making informed decisions. Many European cities, especially the small- and the medium-sized ones, continue to use the traditional four-step modeling approach. This approach does not have the necessary capacity to model the shared mobility services and there is a need to extend them. Hence, this research proposes an extended framework, which includes modules for synthetic population generation and fleet management. Furthermore, modules are also suggested for the estimation of emissions, car-ownership and induced demand, as such measures are increasingly expected by cities. Multiple equilibrium checks between the aforementioned modules are avoided in the design of this development, to reduce model complexity and convergence issues. The models and the algorithms used for the additional modules in this study can be replaced with alternative equivalent models, provided the inputs and outputs are consistent with the framework. As such, the framework is software agnostic. Based on a case study on the city of Thessaloniki, a proof of concept is provided. The intermediate modeling framework, proposed in this study, provides an opportunity for cities to evaluate and integrate shared mobility systems and form long term planning strategies. Besides, it acts as a bridge between the worlds of simple and complex modeling approaches and pave the way for reducing the reservations of the cities toward complex approaches, while preparing them for a smoother transition in future.

Relevant
Eliminating the impacts of traffic volume variation on before and after studies: a causal inference approach

A before and after study framework measures the outcomes in a group of participants before introducing an intervention, and then again afterward. In this study, a before and after study framework is adopted to evaluate the effectiveness of transportation policies and emerging technologies. Generally, the outcome of every before and after study will help decision-makers to monitor and understand the effects of interventions and to make sound decisions. However, many factors such as seasonal factors, holidays, and lane closures might interfere with the evaluation process by inducing variation in traffic volume during the before and after periods. In practice, limited effort has been made to eliminate the effects of these factors. In this study, an extreme gradient boosting (XGBoost)-based propensity score matching (PSM) method is proposed to reduce the biases caused by traffic volume variation during the before and after periods. In order to evaluate the effectiveness of the proposed method, a corridor in the City of Chandler, Arizona where an advanced traffic signal control system has been recently implemented was selected. The results indicated that the proposed method can effectively eliminate the variation in traffic volume caused by the COVID-19 during the evaluation process. In addition, the results of the t-test and Kolmogorov-Smirnov (KS) test demonstrated that the proposed method outperforms other state-of-the-art PSM methods. The application of the proposed method is also transferrable to other before and after evaluation studies and can significantly assist transportation engineers to eliminate the impacts of traffic volume variation on the evaluation process.

Relevant
Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors

Accurate detection plays a critical role in improving the safety situation of vulnerable road users. This study extends infrastructure-based LiDAR application to all three major vulnerable road user groups including pedestrians, cyclists, and wheelchair users. Two critical problems for accurate detection of small-sized road users are scanning angle variability and feature fluctuation. To address these issues, a feature-based classification method combined with prior LiDAR trajectory information is developed. Effective dimension-related features are proposed and five classifiers including artificial neural network (ANN), random forest (RF), adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and long short-term memory (LSTM) are tested with a novel feature engineering process. A total of seven features are selected from the point cloud of clusters for vehicle/pedestrian/cyclist/wheelchair classification. By updating these significant features based on prior information of the entire trajectory, the performance of road user classification (imbalanced datasets) has been significantly improved. Experimental study is conducted to examine the recall rate, F1-score, and AUC of vehicles, pedestrians, cyclists, and wheelchairs before and after integration with prior trajectory information. The result shows the trained AdaBoost, RUSBoost, and LSTM classifiers with prior trajectory information can achieve recall/F1-score/AUC: (1) Low traffic volumes – vehicles (100%/99.96%/99.96%), pedestrians (99.96%/99.96%/99.97%), cyclists (99.74%/99.45%/99.67%), and wheelchairs (99.22%/99.68%/99.01%) and (2) Moderate traffic volumes – vehicles (99.39%/99.44%/99.69%), pedestrians (98.33%/97.99%/98.64%), and cyclists (95.41%/94.29%/94.40%), using 32-laser LiDAR sensors (10 Hz).

Relevant
Traffic-sensitive speed advisory system based on Lagrangian traffic indicators

Can we elaborate a traffic-sensitive eco-driving or GLOSA (Green Light Optimal Speed Advice) strategy with a frugal amount of data when approaching an intersection? Here is the purpose of this work, which aims to adapt a traffic-theory-based estimation of the expected queue-length within mixed traffic (Connected and non-Connected Vehicles) in the vicinity of a signalized intersection. While the expected queue-length methodology was developed recently and fits natively with Eulerian traffic indicators resulting from loop sensors or cameras, this paper adapts such a methodology to Lagrangian indicators as the traces produced by any Connected Vehicle, including Floating Car or Probe Data. The main interest of the methodology lies in the frugal amount of data and expenses required to perform the traffic-sensitive speed-advisory at any connected road intersection. The full methodology is developed to extend the SPAT messages broadcast to end-users and take advantage of the Cooperative Awareness Messages (CAM) acting as GPS traces for Connected Vehicles. Contrary to Eulerian-based indicators, no supplementary and costly investment is required to collect the input data and compute the queue-length estimation. However, applying strategies based on Lagrangian indicators will affect the direct traffic observation through these indicators. Therefore, it requires to develop an assessment and predictive framework to estimate the traffic conditions. The performance of the introduced methodology is compared to alternative methods, among other Eulerian-based methods. It results from the analysis that the introduced approach performs almost as well as the ones based on exhaustive, but costly data collections.

Relevant
Adaptive green split optimization for traffic control with low penetration rate trajectory data

Adaptive traffic signal control systems often rely on expensive physical detection infrastructure. However, with the advent of widespread trajectory data, it is now possible to implement adaptive control entirely avoiding such costs. We present two simple adaptive control policies which only require sample delay and number of stops, with the goal to mitigate the presence of oversaturation. The simplicity stems from the necessity of controlling under any trajectory penetration rate. The two policies differ on the possibilities of the control infrastructure to be implemented. The first one minimizes oversaturation by deviating from a reference pre-timed signal plan. This signal plan can be an existing one or an estimated one from aggregating trajectory data. The second policy creates first a set of green split plans to be then selected by a control logic. This second policy is intended to be used in SCATS-like systems where signal plans are limited to a pre-defined discrete set. We propose a plan selection logics or alternatively, the original plan selection policy can be used as well. Both policies are tested in the field, achieving a significant reduction in delay, oversaturation and spillover ratios. Lastly, we test an application of this policy as an enhancement of SCATS systems in the presence of malfunctioning physical detectors.

Relevant
Inferring the number of vehicles between trajectory-observed vehicles

Traffic perception is the foundation of intelligent roads, and how to accurately perceive traffic has become a central issue for researchers. With the application of Vehicle-to-Everything communication technology, vehicle IDs, locations, velocities, and accelerations can be obtained by the Roadside Unit (RSU), i.e., trajectory-observed vehicles for the road. Inferring the number of vehicles between trajectory-observed vehicles can make traffic perception more accurate, with which the traffic can be sensed on the whole road. Thus, in the case of mixed traffic flow, a Real-Time Prediction Model was proposed, which is a novel model containing four modules: prior experience of the space headway, linear distribution of velocity and acceleration, identification of traffic shockwave, and filter. The inferred result was calculated in real time. During the test, we used US-101 lane-1 data of the Next Generation Simulation dataset and trajectory-observed vehicles with stochastic distribution for 20% penetration. The length of the study area on the US-101 highway was approximately 2100 feet, which was similar to the communication area of a single RSU. During the evaluation of the model accuracy with the real-world datasets, the error of the inferred vehicle numbers in the study area could be limited to ±5 vehicles almost. Results show that it is feasible to infer the number of vehicles between trajectory-observed vehicles. The model compensates for the shortcomings of traditional models (based on inductive loop, camera, or radar), thus providing a novel method for the traffic perception of intelligent roads.

Relevant