30,434 publications found
Sort by
A biomimetic design for efficient petrochemical spill disposal: CoFe-PBA modified superhydrophobic melamine sponge with mechanical/chemical durability and low fire risk.

Due to frequent petrochemical spills, environmental pollution and the threat of secondary marine fires have arisen, necessitating an urgent need for petrochemical spill treatment strategies with high-performance oil-water separation capabilities. To address the challenges of poor durability, instability in hydrophobic conditions, and difficulty in absorbing high-viscosity crude oil associated with hydrophobic absorbent materials, the authors of this study took inspiration from the unique micro and nanostructures of springtails' water-repellent skin. We engineered a superhydrophobic melamine sponge using interfacial assembly techniques designated as Si@PBA@PDA@MS. This material demonstrated improved mechanical and chemical durability, enhanced photothermal performance, and reduced fire risk. The metal-organic framework (MOF)-derived cobalt-iron Prussian blue analog (CoFe-PBA) was firmly anchored to the sponge framework by the chelation of cobalt ions using polydopamine (PDA). The results demonstrated that Si@PBA@PDA@MS demonstrated excellent superhydrophobicity (WCA=163.5°) and oil absorption capacity (53.4-97.5g/g), maintaining high durability even after 20 cycles of absorption-squeezing. Additionally, it could still exhibit excellent mechanical properties, hydrophobic stability, and absorption performance across a wide temperature range (0-100°C), pH range (1-14), and high compression strength (ε=80%), with excellent mechanical/chemical durability. Furthermore, Si@PBA@PDA@MS demonstrated remarkable photothermal performance and low fire risk, offering efficient, safe, and sustainable practical value for effective petrochemical spill treatment.

Relevant
Phthalate acid esters contribute to the cytotoxicity of mask leachate: Cell-based assay for toxicity assessment.

After the COVID-19 outbreak, masks have become an essential part of people lives. Although several studies have been conducted to determine the release of hazardous substances from masks, how their co-presence poses a potential exposure risk to human health remains unexplored. In this study, we quantitatively compared the leaching of substances from six different common types of masks, including phthalate acid esters (PAEs), metals, and microplastics (MPs), and comprehensively evaluated the potential cytotoxicity of different leachates. MPs smaller than 3µm were quantified by Py-GC-MS, and reusable masks showed greater releasing potentials up to 1504µg/g. We also detected the prevalence of PAEs in masks, with the highest release reaching 42μg/g, with dibutyl phthalate (DBP), diisobutyl phthalate (DiBP) and bis (2-ethylhexyl) phthalate (DEHP) being the predominant types. Moreover, the antimicrobial cloth masks released 173.0µg of Cu or 4.5µg of Ag, representing 2.7% and 0.04% of the original masks, respectively. Our cell-based assay results demonstrated for the first time that mask leachate induced nuclear condensation with DNA damage, and simultaneously triggered high levels of glutathione and reactive oxidative stress production, which exacerbated mitochondrial fragmentation, eventually leading to cell death. Combined with substance identification and correlation analysis, PAEs were found to be the contributors to cytotoxicity. Masks containing Cu or Ag led to acidification of lysosomes and alkalinization of cells. These results strongly suggested that the levels of PAEs in the production of regulatory masks should be strictly controlled.

Relevant
Cetaceans as bio-indicators revealed the increased risks of triclosan exposure and associated thyroid hormone disruption during the COVID-19 pandemic.

The global surge in disinfection practices from the COVID-19 response has raised concerns about the marine exposure to the hazardous ingredients in disinfectant products, including triclosan (TCS) and triclocarban (TCC). However, there are very limited studies on the response of marine TCS and TCC (TCs) loading to the COVID-19 pandemic. Here we used cetaceans as bio-indicators for a long-term retrospective analysis of TCs loading to the South China Sea (SCS) between 2004 and 2022. Hepatic TCs was 100% detected in all nine cetacean species (n=120). Interestingly, TCS concentrations decreased in Indo-Pacific humpback dolphins (IPHD) before the pandemic from 2010 to 2017. However, after 2019, TCS concentrations in IPHD significantly increased several-fold. Similarly, post-pandemic TCS concentrations in Indo-Pacific finless porpoises (IPFP) and two fish species were significantly higher than pre-pandemic levels. There were significant relationships between thyroid hormones (THs) and TCs in IPHD and IPFP, suggesting that increased TCs may worsen the interference of THs homeostasis and nutritional conditions in cetaceans. These findings demonstrate the profound impact of the surging use of TCs-containing products from the COVID-19 response on marine ecosystems.

Relevant
Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate.

Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn2+) pressures were comparatively analyzed. The presence of ZnO NPs and Zn2+ promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn2+ mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn2+ pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn2+ pressures supported the enrichment of ARGs.

Relevant
Schwertmannite-based heterogeneous Fenton for enhancing sludge dewaterability over a wide pH range.

Fe-based Fenton technology is commonly used to enhance sludge dewaterability, but it requires subsequent neutralization, resulting in excessive chemical consumption. In this study, we investigated the feasibility of using schwertmannite-composited Fe3O4 (Sch/Fe3O4) as a heterogeneous Fenton catalyst to enhance sludge dewaterability without the need for pH adjustment. A high reduction efficiency of sludge specific resistance to filtration (94.4%), moisture content (11.4%) and bound water (45.5%) after Sch/Fe3O4 +H2O2 treatment at initial pH 7.5 were obtained, suggesting that Sch/Fe3O4 +H2O2 posed good dehydration performance without any acidification. SO42- and H+ generation in Sch/Fe3O4 system played an important role in sludge pH decrease, which facilitated sludge cell lysis, intracellular water release, and provided a suitable pH for Fenton reaction. Reactive species (•OH, •O2-, and 1O2) from Sch/Fe3O4 +H2O2 could effectively destroy sludge EPS, releasing more bound water. Additionally, the negatively charged compounds were neutralized by dissolved Fe2+/Fe3+. Sch/Fe3O4, as a skeleton builder, rearranged the dissociative sludge flocs to improve the incompressibility and permeability of sludge cake. Finally, sludge treated with Sch/Fe3O4 +H2O2 achieved organic matters reserve, heavy metals reduction, further benefiting the final disposal.

Relevant
Soil microbial community compositions and metabolite profiles of Achnatherum inebrians affect phytoremediation potential in Cd contaminated soil.

Cadmium (Cd) contamination poses serious risks to soil ecosystems and human health. Herein, the effect of two drunken horse grasses (Achnatherum inebrians) including endophytes Epichloëgansuensis infected (E+) and uninfected (E-) on the phytoremediation of Cd-contaminated soils were analyzed by coupling high-throughput sequencing and soil metabolomics. The results showed that the high-risk soil Cd decreased and the medium- and low-risk Cd fraction increased to varying degrees after planting E+and E- plants in the soil. Meanwhile, total Cd content decreased by 19.7 % and 35.1 % in E+and E- A. inebrians-planted soils, respectively. Principal coordinate analysis revealed a significant impact of E+and E- plants on the soil microbial community. Most stress-tolerant and gram-positive functional bacterial taxa were enriched to stabilize Cd(II) in E+planted soil. Several beneficial fungal groups related to saprotroph and symbiotroph were enriched to absorb Cd(II) in E- soil. Soil metabolomic analysis showed that the introduction of A. inebrians could weaken the threat of CdCl2 to soil microbe metabolism and improve soil quality, which in turn promoted plant growth and improved phytoremediation efficiency in Cd-contaminated soil. In conclusion, A. inebrians plants alleviate soil Cd pollution by regulating soil microbial metabolism and microbial community structure. These results provide valuable information for an in-depth understanding of the phytoremediation mechanisms of A. inebrians.

Relevant
Association between urinary neonicotinoid insecticide levels and dyslipidemia risk: A cross-sectional study in Chinese community-dwelling elderly.

Experimental evidence has demonstrated that neonicotinoids (NEOs) exposure can cause lipid accumulation and increased leptin levels. However, the relationship between NEOs exposure and dyslipidemia in humans remains unclear, and the interactive effects of NEOs and their characteristic metabolites on dyslipidemia remain unknown. We detected 14 NEOs and their metabolites in urine samples of 500 individuals (236 and 264 with and without dyslipidemia, respectively) randomly selected from the baseline of the Yinchuan community-dwelling elderly cohort (Ningxia, China). The NEOs and their metabolites were widely detected in urine (87.2-99.6 %) samples, and the median levels ranged within 0.06-0.55μg/g creatinine. The positive associations and dose-dependent relationships of thiacloprid, imidacloprid-olefin, and imidacloprid-equivalent total with dyslipidemia were validated using restricted cubic spline analysis. Mixture models revealed a positive association between the NEOs mixture and dyslipidemia risk, with urine desnitro-imidacloprid ranked as the top contributor. The Bayesian Kernel Machine Regression models showed that the NEOs mixtures were associated with increased dyslipidemia when the chemical mixtures were ≥25th percentile compared to their medians, and desnitro-imidacloprid and imidacloprid-olefin were the major contributors to the combined effect. Given the widespread use of NEOs and the dyslipidemia pandemic, further investigations are urgently needed to confirm our findings and elucidate the underlying mechanisms.

Relevant
Understanding the sources of mercury release from coal: A combined experimental and molecular simulation study.

Understanding the occurrence modes of mercury in coal is important as its release poses long-term adverse effects on the environment and human health during coal production and utilization. However, the matter still remains a subject of controversy due to differing results from direct and indirect analyses, which suggest various possible modes of occurrence for mercury in coal. Additionally, the experimental measurement of Hg concentration presents challenges, further contributing to the complexity of the issue. A comprehensive investigation of experiments and molecular simulations is conducted herein. Electron probe microanalysis and elemental mapping analysis show that elemental Hg is concentrated in framboidal pyrites while absent in organic matter. To understand the occurrence modes of mercury in inorganic and organic materials at the atomic level, molecular simulations are performed for Hg2+ adsorption and retention in MMT, pyrite, and kerogen slit nanopores. It is found that the inorganic MMT and pyrite surfaces have a greater adsorption capacity than the organic kerogen surface (pyrite > MMT > kerogen). The outer-sphere adsorption is mainly observed with at least one monolayer of water molecules exiting between the ion and mineral surfaces. MMT has the highest retention for Hg2+ transport as the self-diffusion coefficient is the smallest among the three slit pores (MMT < pyrite < kerogen). The high adsorption and retention originate from the strong Hg2+-mineral interaction. These results suggest that mercury in coal is most likely associated with inorganic minerals instead of organic matter.

Relevant