13,825 publications found
Sort by
The physiology of growth hormone (GH) in adults: translational journey to GH replacement therapy

The fact that growth hormone (GH) plays an important role in health after the cessation of growth requiring replacement therapy in adult life has only been recognised in the last three decades. This has only been made possible by recombinant technology providing GH supplies required to undertake investigations in the physiology of GH action and the benefits of replacement therapy in patients identified by rigorously validated diagnostic tests for GH deficiency (GHD). Human studies have revealed important regulatory roles in substrate metabolism, sodium homeostasis, body composition, and physical function. GH-induced anabolism is achieved by stimulating amino acid incorporation into protein while reducing oxidative loss simultaneously enhancing lipid utilisation by stimulating fatty acid oxidation and reducing lipid storage. Sodium and fluid retention are enhanced by activating the renin-angiotensin system and distal renal tubular reabsorption. GH stimulates the aerobic and anaerobic energy systems that underpin muscle and cardiovascular function. These pleiotropic actions explain the clinical picture of increased adiposity, reduced lean mass, and impaired physical and psychological function in the GHD adult, all of which are reversed when GH is replaced. Women require a greater replacement dose of GH than men. This is because androgens enhance while oestrogens attenuate GH action. The oestrogen effect is route-dependent, occurring with oral delivery blunting the liver-mediated actions of GH by directly inhibiting GH receptor signalling, global experience spanning over 30 years has attested to the safety, efficacy, and benefits of replacement therapy for adults with GHD.

Relevant
Advances in preclinical models of prostate cancer for research discovery

There is longstanding interest in the role of androgens in the aetiology of prostate cancer, one of the most common malignancies worldwide. In this review, we reflect on the ways that knowledge of prostate development and hormone action have catalysed advances in the management of patients with prostate cancer. The use of hormone therapies to treat prostate cancer has changed significantly over time, including the emergence of androgen receptor signalling inhibitors (ARSI). These compounds have improved outcomes for patients with castration-resistant prostate cancer, which was once considered 'androgen-independent' but is clearly still driven by androgen receptor signalling in many cases. There is also a need for new therapies to manage neuroendocrine prostate cancer, which is not responsive to hormonal agents. One of the major gaps is understanding how treatment-induced neuroendocrine prostate cancer emerges and whether it can be re-sensitised to treatment. Patient-derived models, including patient-derived xenografts (PDXs), will be instrumental in facilitating future discoveries in these areas. Developments in the use of PDXs have been fostered by lessons from the field of endocrinology, such as the role of stroma and hormones in normal and developmental tissues. Thus, there is ongoing reciprocity between the discoveries in endocrinology and advances in prostate cancer research and treatment.

Open Access
Relevant
SerpinA3N deficiency attenuates steatosis and enhances insulin signaling in male mice

Aberrant hepatic lipid metabolism is the major cause of non-alcoholic fatty liver disease (NAFLD) and is associated with insulin resistance and type 2 diabetes. Serine (or cysteine) peptidase inhibitor, clade A, member 3N (SerpinA3N) is highly expressed in the liver; however, its functional role in regulating NAFLD and associated metabolic disorders are not known. Male wildtype and hepatocyte Serpina3N knockout (HKO) mice were fed a control diet, methionine- and choline-deficient diet or high-fat high-sucrose diet to induce NAFLD and markers of lipid metabolism and glucose homeostasis were assessed. SerpinA3N protein was markedly induced in mice with fatty livers. Hepatic deletion of SerpinA3N attenuated steatosis which correlated with altered lipid metabolism genes, increased fatty acid oxidation activity and enhanced insulin signaling in mice with NAFLD. Additionally, SerpinA3N HKO mice had reduced epididymal white adipose tissue mass, leptin, and insulin levels, improved glucose tolerance, and enhanced insulin sensitivity which was associated with elevated insulin-like growth factor binding protein-1 (IGFBP1) and activation of the leptin receptor (LEPR)-STAT3 signaling pathway. Our findings provide a novel insight into the functional role of SerpinA3N in regulating NAFLD and glucose homeostasis.

Open Access
Relevant
Apoptosis-modulatory miR-361-3p as a novel treatment target in endocrine-responsive and endocrine-resistant breast cancer

Breast cancer (BC) is the most diagnosed cancer in women worldwide. In estrogen receptor (ER)-positive disease, anti-estrogens and aromatase inhibitors (AI) improve patient survival; however, many patients develop resistance. Dysregulation of apoptosis is a common resistance mechanism; thus, agents that can reinstate the activity of apoptotic pathways represent promising therapeutics for advanced drug-resistant disease. Emerging targets in this scenario include microRNAs (miRs). To identify miRs modulating apoptosis in drug-responsive and -resistant BC, a high-throughput miR inhibitor screen was performed, followed by high-content screening microscopy for apoptotic markers. Validation demonstrated that miR-361-3p inhibitor significantly increases early apoptosis and reduces proliferation of drug-responsive (MCF7), plus AI-/antiestrogen-resistant derivatives (LTED, TamR, FulvR), and ER- cells (MDA-MB-231). Importantly, proliferation-inhibitory effects were observed in vivo in a xenograft model, indicating the potential clinical application of miR-361-3p inhibition. RNA-seq of tumour xenografts identified FANCA as a direct miR-361-3p target, and validation suggested miR-361-3p inhibitor effects might be mediated in part through FANCA modulation. Moreover, miR-361-3p inhibition resulted in p53-mediated G1 cell cycle arrest through activation of p21 and reduced BC invasion. Analysis of publicly available datasets showed miR-361-3p expression is significantly higher in primary breast tumours vspaired normal tissue and is associated with decreased overall survival. In addition, miR-361-3p inhibitor treatment of BC patient explants decreased levels of miR-361-3p and proliferation marker, Ki67. Finally, miR-361-3p inhibitor showed synergistic effects on BC growth when combined with PARP inhibitor, Olaparib. Together, these studies identify miR-361-3p inhibitor as a potential new treatment for drug-responsive and -resistant advanced BC.

Open Access
Relevant
NLRP3 inflammasome activation, metabolic danger signals, and protein binding partners

The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an oligomeric complex that assembles in response to exogenous signals of pathogen infection and endogenous danger signals of non-microbial origin. When NLRP3 inflammasome assembly activates caspase-1, it promotes the maturation and release of the inflammatory cytokines interleukin-1B and IL-18. Aberrant activation of the NLRP3 inflammasome has been implicated in various diseases, including chronic inflammatory, metabolic, and cardiovascular diseases. The NLRP3 inflammasome can be activated through several principal mechanisms, including K+ efflux, lysosomal damage, and the production of mitochondrial reactive oxygen species. Interestingly, metabolic danger signals activate the NLRP3 inflammasome to induce metabolic diseases. NLRP3 contains three crucial domains: an N-terminal pyrin domain, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat domain. Protein-protein interactions act as a 'pedal or brake' to control the activation of the NLRP3 inflammasome. In this review, we present the mechanisms underlying NLRP3 inflammasome activation after induction by metabolic danger signals or via protein-protein interactions with NLRP3 that likely occur in metabolic diseases. Understanding these mechanisms will enable the development of specific inhibitors to treat NLRP3-related metabolic diseases.

Open Access
Relevant