2,995 publications found
Sort by
Bayesian Convolutional Neural Networks in Medical Imaging Classification: A Promising Solution for Deep Learning Limits in Data Scarcity Scenarios.

Deep neural networks (DNNs) have already impacted the field of medicine in data analysis, classification, and image processing. Unfortunately, their performance is drastically reduced when datasets are scarce in nature (e.g., rare diseases or early-research data). In such scenarios, DNNs display poor capacity for generalization and often lead to highly biased estimates and silent failures. Moreover, deterministic systems cannot provide epistemic uncertainty, a key component to asserting the model's reliability. In this work, we developed a probabilistic system for classification as a framework for addressing the aforementioned criticalities. Specifically, we implemented a Bayesian convolutional neural network (BCNN) for the classification of cardiac amyloidosis (CA) subtypes. We prepared four different CNNs: base-deterministic, dropout-deterministic, dropout-Bayesian, and Bayesian. We then trained them on a dataset of 1107 PET images from 47 CA and control patients (data scarcity scenario). The Bayesian model achieved performances (78.28 (1.99) % test accuracy) comparable to the base-deterministic, dropout-deterministic, and dropout-Bayesian ones, while showing strongly increased "Out of Distribution" input detection (validation-test accuracy mismatch reduction). Additionally, both the dropout-Bayesian and the Bayesian models enriched the classification through confidence estimates, while reducing the criticalities of the dropout-deterministic and base-deterministic approaches. This in turn increased the model's reliability, also providing much needed insights into the network's estimates. The obtained results suggest that a Bayesian CNN can be a promising solution for addressing the challenges posed by data scarcity in medical imaging classification tasks.

Open Access
Relevant
Detecting and Characterizing Inferior Vena Cava Filters on Abdominal Computed Tomography with Data-Driven Computational Frameworks.

Two data-driven algorithms were developed for detecting and characterizing Inferior Vena Cava (IVC) filters on abdominal computed tomographyto assist healthcare providers with the appropriate management of these devices to decrease complications: one based on 2-dimensional data and transfer learning (2D + TL) and an augmented version of the same algorithm which accounts for the 3-dimensional information leveraging recurrent convolutional neural networks (3D + RCNN). The study contains 2048 abdominal computed tomography studies obtained from 439 patients who underwent IVC filter placement during the 10-year period from January 1st, 2009, to January 1st, 2019. Among these, 399 patients had retrievable filters, and 40 had non-retrievable filter types. The reference annotations for the filter location were obtained through a custom-developed interface. The ground truth annotations for the filter types were determined based on the electronic medical record and physician review of imaging. The initial stage of the framework returns a list of locations containing metallic objects based on the density of the structure. The second stage processes the candidate locations and determines which one contains an IVC filter. The final stage of the pipeline classifies the filter types as retrievable vs. non-retrievable. The computational models are trained using Tensorflow Keras API on an Nvidia Quadro GV100 system. We utilized a fine-tuning supervised training strategy to conduct our experiments. We find that the system achieves high sensitivity on detecting the filter locations with a high confidence value. The 2D + TL model achieved a sensitivity of 0.911 and a precision of 0.804, and the 3D + RCNN model achieved a sensitivity of 0.923 and a precision of 0.853 for filter detection. The system confidence for the IVC location predictions is high: 0.993 for 2D + TL and 0.996 for 3D + RCNN. The filter type prediction component of the system achieved 0.945 sensitivity, 0.882 specificity, and 0.97 AUC score with 2D + TL and 0. 940 sensitivity, 0.927 specificity, and 0.975 AUC score with 3D + RCNN. With the intent to create tools to improve patient outcomes, this study describes the initial phase of a computational framework to support healthcare providers in detecting patients with retained IVC filters, so an individualized decision can be made to remove these devices when appropriate, to decrease complications. To our knowledge, this is the first study that curates abdominal computed tomography (CT) scans and presents an algorithm for automated detection and characterization of IVC filters.

Open Access
Relevant
External Validation of Robust Radiomic Signature to Predict 2-Year Overall Survivalin Non-Small-Cell Lung Cancer.

Lung cancer is the second most fatal disease worldwide. In the last few years, radiomics is being explored to develop prediction models for various clinical endpoints in lung cancer. However, the robustness of radiomic features is under question and has been identified as one of the roadblocks in the implementation of a radiomic-based prediction model in the clinic. Many past studies have suggested identifying the robust radiomic feature to develop a prediction model. In our earlier study, we identified robust radiomic features for prediction model development. The objective of this study was to develop and validate the robust radiomic signatures for predicting 2-year overall survival in non-small cell lung cancer (NSCLC). This retrospective study included a cohort of 300 stage I-IV NSCLC patients. Institutional 200 patients' data were included for training and internal validation and 100 patients' data from The Cancer Image Archive (TCIA) open-source image repository for external validation. Radiomic features were extracted from the CT images of both cohorts. The feature selection was performed using hierarchical clustering, a Chi-squared test, and recursive feature elimination (RFE). In total, six prediction models were developed using random forest(RF-Model-O, RF-Model-B), gradient boosting(GB-Model-O, GB-Model-B), and support vector(SV-Model-O, SV-Model-B) classifiers to predict 2-year overall survival (OS) on original data as well as balanced data. Model validation was performed using 10-fold cross-validation, internal validation, and external validation. Using a multistep feature selection method, the overall top 10 features were chosen. On internal validation, the tworandom forest models (RF-Model-O, RF-Model-B)displayed the highest accuracy; their scores on the original and balanced datasets were 0.81 and 0.77respectively. During external validation, both the randomforestmodels' accuracy was 0.68. In our study,robust radiomic features showed promising predictive performance to predict 2-year overall survival in NSCLC.

Open Access
Relevant
Left Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms.

Heart failure caused by iron deposits in the myocardium is the primary cause of mortality in beta-thalassemia major patients. Cardiac magnetic resonance imaging (CMRI) T2* is the primary screening technique used to detect myocardial iron overload, but inherently bears some limitations. In this study, we aimed to differentiate beta-thalassemia major patients with myocardial iron overload from those without myocardial iron overload (detected by T2*CMRI) based on radiomic features extracted from echocardiography images and machine learning (ML) in patients with normal left ventricular ejection fraction (LVEF > 55%) in echocardiography. Out of 91 cases, 44 patients with thalassemia major with normal LVEF (> 55%) and T2* ≤ 20ms and 47 people with LVEF > 55% and T2* > 20ms as the control group were included in the study. Radiomic features were extracted for each end-systolic (ES) and end-diastolic (ED) image. Then, three feature selection (FS) methods and six different classifiers were used. The models were evaluated using various metrics, including the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Maximum relevance-minimum redundancy-eXtreme gradient boosting (MRMR-XGB) (AUC = 0.73, ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP (AUC = 0.69, ACC = 0.69, SPE = 0.56, SEN = 0.83), and recursive feature elimination-K-nearest neighbors (RFE-KNN) (AUC = 0.65, ACC = 0.65, SPE = 0.64, SEN = 0.65) were the best models in ED, ES, and ED&ES datasets. Using radiomic features extracted from echocardiographic images and ML, it is feasible to predict cardiac problems caused by iron overload.

Open Access
Relevant
DMCA-GAN: Dual Multilevel Constrained Attention GAN for MRI-Based Hippocampus Segmentation.

Precise segmentation of the hippocampus is essential for various human brain activity and neurological disorder studies. To overcome the small size of the hippocampus and the low contrast of MR images, a dual multilevel constrained attention GAN for MRI-based hippocampus segmentation is proposed in this paper, which is used to provide a relatively effective balance between suppressing noise interference and enhancing feature learning. First, we design the dual-GAN backbone to effectively compensate for the spatial information damage caused by multiple pooling operations in the feature generation stage. Specifically, dual-GAN performs joint adversarial learning on the multiscale feature maps at the end of the generator, which yields an average Dice coefficient (DSC) gain of 5.95% over the baseline. Next, to suppress MRI high-frequency noise interference, a multilayer information constraint unit is introduced before feature decoding, which improves the sensitivity of the decoder to forecast features by 5.39% and effectively alleviates the network overfitting problem. Then, to refine the boundary segmentation effects, we construct a multiscale feature attention restraint mechanism, which forces the network to concentrate more on effective multiscale details, thus improving the robustness. Furthermore, the dual discriminators D1 and D2 also effectively prevent the negative migration phenomenon. The proposed DMCA-GAN obtained a DSC of 90.53% on the Medical Segmentation Decathlon (MSD) dataset with tenfold cross-validation, which is superior to the backbone by 3.78%.

Relevant
MF-Net: Automated Muscle Fiber Segmentation From Immunofluorescence Images Using a Local-Global Feature Fusion Network.

Histological assessment of skeletal muscle slices is very important for the accurate evaluation of weightless muscle atrophy. The accurate identification and segmentation of muscle fiber boundary is an important prerequisite for the evaluation of skeletal muscle fiber atrophy. However, there are many challenges to segment muscle fiber from immunofluorescence images, including the presence of low contrast in fiber boundaries in immunofluorescence images and the influence of background noise. Due to the limitations of traditional convolutional neural network-based segmentation methods in capturing global information, they cannot achieve ideal segmentation results. In this paper, we propose a muscle fiber segmentation network (MF-Net) method for effective segmentation of macaque muscle fibers in immunofluorescence images. The network adopts a dual encoder branch composed of convolutional neural networks and transformer to effectively capture local and global feature information in the immunofluorescence image, highlight foreground features, and suppress irrelevant background noise. In addition, a low-level feature decoder module is proposed to capture more global context information by combining different image scales to supplement the missing detail pixels. In this study, a comprehensive experiment was carried out on the immunofluorescence datasets of six macaques' weightlessness models and compared with the state-of-the-art deep learning model. It is proved from five segmentation indices that the proposed automatic segmentation method can be accurately and effectively applied to muscle fiber segmentation in shank immunofluorescence images.

Relevant
Pulmonary Surface Irregularity Score as a New Quantitative CT Marker for Idiopathic Pulmonary Fibrosis-a Pilot Study.

The purpose of this study is to evaluate the accuracy and inter-observer agreement of a quantitative pulmonary surface irregularity (PSI) score on high-resolution chest CT (HRCT) for predicting transplant-free survival in patients with IPF. For this IRB-approved HIPAA-compliant retrospective single-center study, adult patients with IPF and HRCT imaging (N = 50) and an age- and gender-matched negative control group with normal HRCT imaging (N = 50) were identified. Four independent readers measured the PSI score in the midlungs on HRCT images using dedicated software while blinded to clinical data. A t-test was used to compare the PSI scores between negative control and IPF cohorts. In the IPF cohort, multivariate cox regression analysis was used to associate PSI score and clinical parameters with transplant-free survival. Inter-observer agreement for the PSI score was assessed by intraclass correlation coefficient (ICC). The technical failure rate of the midlung PSI score was 0% (0/100). The mean PSI score of 5.38 in the IPF cohort was significantly higher than 3.14 in the negative control cohort (p < .001). In the IPF cohort, patients with a high PSI score (≥ median) were 8 times more likely to die than patients with a low PSI score (HR: 8.36; 95%CI: 2.91-24.03; p < .001). In a multivariate model including age, gender, FVC, DLCO, and PSI score, only the PSI score was associated with transplant-free survival (HR:2.11 per unit increase; 95%CI: 0.26-3.51; p = .004). Inter-observer agreement for the PSI score among 4 readers was good (ICC: 0.88; 95%CI: 0.84-0.91). The PSI score had high accuracy and good inter-observer agreement on HRCT for predicting transplant-free survival in patients with IPF.

Relevant
Deep Transfer Learning-Based Approach for Glucose Transporter-1 (GLUT1) Expression Assessment.

Glucose transporter-1 (GLUT-1) expression level is a biomarker of tumour hypoxia condition in immunohistochemistry (IHC)-stained images. Thus, the GLUT-1 scoring is a routine procedure currently employed for predicting tumour hypoxia markers in clinical practice. However, visual assessment of GLUT-1 scores is subjective and consequently prone to inter-pathologist variability. Therefore, this study proposes an automated method for assessing GLUT-1 scores in IHC colorectal carcinoma images. For this purpose, we leverage deep transfer learning methodologies for evaluating the performance of six different pre-trained convolutional neural network (CNN) architectures: AlexNet, VGG16, GoogleNet, ResNet50, DenseNet-201 and ShuffleNet. The target CNNs are fine-tuned as classifiers or adapted as feature extractors with support vector machine (SVM) to classify GLUT-1 scores in IHC images. Our experimental results show that the winning model is the trained SVM classifier on the extracted deep features fusion Feat-Concat from DenseNet201, ResNet50 and GoogLeNet extractors. It yields the highest prediction accuracy of 98.86%, thus outperforming the other classifiers on our dataset. We also conclude, from comparing the methodologies, that the off-the-shelf feature extraction is better than the fine-tuning model in terms of time and resources required for training.

Open Access
Relevant
Enhancing Caries Detection in Bitewing Radiographs Using YOLOv7.

The study aimed to evaluate the impact of image size, area of detection (IoU) thresholds and confidence thresholds on the performance of the YOLO models in the detection of dental caries in bitewing radiographs. A total of 2575 bitewing radiographs were annotated with seven classes according to the ICCMS™ radiographic scoring system. YOLOv3 and YOLOv7 modelswere employed with different configurations, and their performances were evaluated based on precision, recall, F1-score and mean average precision (mAP). Results showed that YOLOv7 with 640 × 640pixel images exhibitedsignificantly superior performance compared to YOLOv3 in terms of precision (0.557 vs. 0.268), F1-score (0.555 vs. 0.375) and mAP (0.562 vs. 0.458), while the recall was significantly lower (0.552 vs. 0.697). The following experiment found that the overall mAPs did not significantly differ between 640 × 640 pixel and 1280 × 1280 pixelimages, for YOLOv7 with an IoU of 50% and a confidence threshold of 0.001 (p = 0.866). The last experiment revealed that the precision significantly increased from 0.570 to 0.593 for YOLOv7 with an IoU of 75% and a confidence threshold of 0.5, but the mean-recall significantly decreased and led to lower mAPs in both IoUs. In conclusion, YOLOv7 outperformed YOLOv3 in caries detection and increasing the image size did not enhance the model's performance. Elevating the IoU from 50% to 75% and confidence threshold from 0.001 to 0.5 led to a reduction of the model's performance, while simultaneously improving precision and reducing recall (minimizing false positives and negatives) for carious lesiondetection in bitewing radiographs.

Relevant