3,289 publications found
Sort by
Grid recognition: Classical and parameterized computational perspectives

Grid graphs, and, more generally, $k\times r$ grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph is particularly hard -- it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by $k+\mathsf {mcc}$ where $\mathsf{mcc}$ is the maximum size of a connected component of $G$. This also implies that the problem is FPT parameterized by $\mathtt{td}+k$ where $\mathtt{td}$ is the treedepth of $G$ (to be compared with the hardness for pathwidth 2 where $k=3$). Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted $a_G$, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by $a_G$, but FPT parameterized by $a_G$ on trees, as well as FPT parameterized by $k+a_G$. Third, we show that the recognition of $k\times r$ grid graphs is NP-hard on graphs of pathwidth 2 where $k=3$. Moreover, when $k$ and $r$ are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1.

Open Access
Relevant
The 2CNF Boolean formula satisfiability problem and the linear space hypothesis

We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by size parameters using simultaneously polynomial time and space on multi-tape deterministic Turing machines. We are particularly focused on a special NL-complete problem, 2SAT---the 2CNF Boolean formula satisfiability problem---parameterized by the number of Boolean variables. It is shown that 2SAT with $n$ variables and $m$ clauses can be solved simultaneously polynomial time and $(n/2^{c\sqrt{\log{n}}})\, polylog(m+n)$ space for an absolute constant $c>0$. This fact inspires us to propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that 2SAT$_3$---a restricted variant of 2SAT in which each variable of a given 2CNF formula appears at most 3 times in the form of literals---cannot be solved simultaneously in polynomial time using strictly sub-linear (i.e., $m(x)^{\varepsilon}\, polylog(|x|)$ for a certain constant $\varepsilon\in(0,1)$) space on all instances $x$. An immediate consequence of this working hypothesis is $\mathrm{L}\neq\mathrm{NL}$. Moreover, we use our hypothesis as a plausible basis to lead to the insolvability of various NL search problems as well as the nonapproximability of NL optimization problems. For our investigation, since standard logarithmic-space reductions may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new, practical notion of reduction. It turns out that, parameterized with the number of variables, $\overline{\mathrm{2SAT}_3}$ is complete for a syntactically restricted version of NL, called Syntactic NL$_{\omega}$, under such short reductions. This fact supports the legitimacy of our working hypothesis.

Open Access
Relevant