424 publications found
Sort by
Influence of the hot water mass flow rate on heating of radiant floors of green buildings

The objective of the research is to improve space heating of green buildings by examining experimentally the influence of the heating medium mass flow rate on thermal performance. A green building was built in Cairo, Egypt, that consists of two similar rooms: one is the heated room and the other is a reference for comparison. A photovoltaic thermal (PV/T) collector is used to heat up water in a storage tank, and the hot water in the tank is circulated in the radiant floor of the examined green building. The hot water mass flow rate was varied between 0.04 and 0.08 kg/s. It was found that decreasing the water mass flow rate improves the heating of the radiant floor. The percentage improvement in floor temperature due to heating over the reference room, reaches about 17% and 6% at mass flow rates of 0.04 and 0.08 kg/s, respectively. Engineering Equation Solver (EES) was used to solve the equations for the heat transfer process between the heating water and the floor. It was found that decreasing the mass flow rate increases the residence time of the heating water in the radiant floor, consequently, increases the heat energy transfer and the floor temperature. Increasing the heating fluid mass flow rate in green buildings could have a negative effect on the heat transfer, such that the appropriate heating fluid mass flow rate should be calculated based on the green building massive material as well as the operating conditions, for example, ambient temperature and wind speed.

Relevant
Influence of cooling surface area on indoor air and surface heat transfer characteristics of a thermally activated building system in warm and humid zones: An Experimental study

Several alternatives have been introduced in recent years to enhance the thermal comfort levels within buildings. Thermally Activated Building Systems (TABS), one of the above alternatives, have gained interest because of the huge benefits this technology offers the building sector. This type of system consists of encapsulated pipes within the building structure to control the surface temperature. This study explores the thermal behavior of the cooling surface and fluctuations in indoor air temperature (IAT) of TABS under various cooling scenarios. Only limited number of investigations has been carried out to study the heat transfer behavior of TABS. Hence, the building indoor thermal properties such as air temperature, surface temperature and rate of heat transfer between the indoor air and inner surface of the TABS has been evaluated experimentally by enhancing the cooling surface area. Moreover the results were compared with the conventional building (no cooling provides). The thermal energy stored in the TABS is significantly removed by the increase in cooling surface area, resulting in a 2°C decrease in the average indoor air temperature. The average heat gain of all wall surfaces in the case of no cooling (WOC) ranges from −3 to 13 W/m2. The amount of heat gain on the walls was not significantly affected by only roof and floor cooling (R+F) activities. Moreover, it ranged from −2 to 24 W/m2 in all surface cooling (ASC) scenarios. As a result, there was additional surface cooling, which increased surface heat gain and indoor cooling capacity.

Relevant
Experimental study on hygrothermal properties of recycled aggregate concrete

Recycled aggregate concrete has great significance from the environmental protection perspective. However, the current research findings on its hygrothermal properties are sparse. In this study, the apparent density, thermal conductivity, mass moisture content, water vapor permeability coefficient, water absorption coefficient, and liquid water diffusion coefficient of recycled aggregate concrete were determined by experimental methods. The effect of temperature and humidity on thermal conductivity was also studied. Furthermore, the fitting relations of the thermal conductivity of recycled aggregate concrete with the two variables of temperature and relative humidity were presented. The isothermal moisture absorption curve and the fitting relationship of water vapor permeability coefficient with relative humidity were also developed. The results indicate that the thermal conductivity of the eight recycled concrete specimens in the dry state at 25°C ranges from 0.994 to 1.242 W/(m·K). The thermal conductivity increases with the increase in temperature. When the temperature rises from 25°C to 35°C, the thermal conductivity of recycled aggregate concrete increases by 3.8%–13.5%. With the increase of relative humidity, the thermal conductivity of recycled aggregate concrete shows an increasing trend, followed by a steady state, and finally the increasing trend, showing a cubic function relationship between them. When the relative humidity increases from 0% to 95%, the thermal conductivity increases by about 20%. The mass moisture content and the water vapor permeability coefficient increase with relative humidity. The results of this study can provide basic information for the study on the heat and moisture transfer of recycled aggregate concrete, and enhance the database of hygrothermal properties of building materials.

Relevant
Development and validation of the steady state centrifuge experiment for the moisture retention curve of porous building materials

With the development of more efficient hygrothermal computer models, simulation studies have become increasingly important in the design of building components. To obtain trustworthy results from these studies, accurate hygric properties are required. The existing methods for moisture storage properties, however, are not very well suited to accurately measure moisture retention curves within a compact timeframe. To improve on this front, this paper introduces the steady state centrifuge technique, a common experiment in soil physics, for use on porous building materials. The laboratory centrifuge, used for the validation of this technique, is self-made to limit its cost and account for specific design choices. In the first part of the paper, the design of the laboratory centrifuge is described and all problems encountered during the development are explained and resolved. The two main problems are excessive heat generation by the motor and unwanted evaporation from the sample’s surfaces. The excessive heat generation is solved by extraction of heat both at the source, by using a ventilator, and at the rotor, by adding carefully positioned air extraction holes. The unwanted evaporation is eliminated by incorporating sample holders to shield the sample from the surrounding air. In the second part of the paper, the steady state centrifuge experiment is used to measure the desorption moisture retention curves of a ceramic brick starting from both saturated and capillary moisture content. The results are validated by their similarity to the curves obtained by mercury intrusion porosimetry. Besides providing accurate results, the determination of the full moisture retention curve requires only 1–2 weeks, which is significantly quicker than other common protocols, such as the pressure plates, which take about 2 months. Additionally, the ability to measure the desorption moisture retention curve from capillary moisture content as well as the limited cost of the centrifuge design (€6000) provide major advantages.

Relevant
Study on heat and moisture transfer characteristics of HPCMs

Phase change materials (PCMs) could be used in envelopes to moderate indoor temperature while hygroscopic materials could be used in envelopes to moderate indoor humidity. However, it remains unsolved whether these two materials are mixed to generate a better effect than single materials. Therefore, a transient model for coupled heat and moisture transfer through hygroscopic PCMs (HPCMs) was presented. The numerical cases of periodic boundary conditions and realistic weather conditions were conducted to investigate the heat and moisture transfer characteristics of three gypsum-based HPCMs containing different mass ratios of microencapsulated PCMs. Quantitative analyses were conducted to capture the effects of hygrothermal properties on heat and moisture transfer characteristics of HPCMs. The numerical results show that the mixing of PCMs and hygroscopic materials could generate a better temperature-humidity controlling effect than pure hygroscopic material, and the condensation risks inside the envelopes could also be reduced. Both the studied cases indicate that the HPCMs could be applied in building envelopes to passively moderate the indoor temperature and humidity simultaneously, reducing the building energy consumption and condensation risks inside the envelopes. The effects of hygroscopic and moisture transfer properties on temperature-control performance of HPCMs are relatively small, while the thermal properties play an important role in the improvement of temperature-humidity controlling performance of HPCMs with the increase of PCM concentration.

Relevant
Numerical modeling for evaluation of the thermal resistance of reflective airspaces with and without defects

The thermal resistances (R-values) of airspaces depends on the emittance of all surfaces around an airspace, dimensions, heat-flow direction, and the temperatures of the bounding surfaces. Assessing the energy performance of building envelope components and fenestration systems requires accurate results for the R-values of any enclosed spaces. The evaluation of reflective insulation R-values has evolved to include use of computational fluid dynamics and surface-to-surface radiation to quantify convective and radiative contributions to the heat transfer across airspaces of all types. This paper compares an advanced and validated model for calculating enclosed airspace R-values with the widely-used ISO 6946 and airspace R-values in the ASHRAE Handbook-Fundamentals. The impact of construction and installation defects on the thermal performance of reflective insulation has not been previously evaluated. In this research, an advanced model was used to evaluate a construction defect and dimensional aspect ratios that one-dimensional methods do not address. Imperfect installation and defects that result in air movement into or through a reflective insulation assembly reduces the thermal resistance of the assembly. Additionally, the amount of thermal resistance reduction depends on the amount and temperature of invasive air or the size of internal defects that allows natural convection inside the reflective airspace. In this study, these performance issues are evaluated quantitatively using computer simulation techniques. The differences in results obtained using methods that are currently being used to evaluate the R-value and the advantages of the advanced method for evaluating the reflective insulation performance for different applications are discussed. For the case considered in this study, the results showed that the failure to achieve parallel surfaces results in less than a 5% decrease in thermal resistance. Also, the results showed that internal air gaps between airspaces result in negligible loss in R-value unless air gaps that allow circulation between airspaces are created.

Relevant
Effects of thermal mass on transient thermal performance of concrete-based walls and energy consumption of an office building

Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.

Open Access
Relevant
Examining the impact of stochastic multi-year weather and air infiltration on hygrothermal moisture risks

The analysis of heat, air, and moisture (H.A.M.) transport for building envelopes are known to be highly dependent on climate loads and air infiltration rates. Moisture content within the assembly is often a key H.A.M. analysis outcome to assess risk and transport behavior. ASHRAE Standard 160-2016 states that building envelope H.A.M. analysis should be done using moisture design reference data or using a minimum of 10 consecutive years of weather. While there has been progress and methods for selecting or designing moisture reference years there has been a lack of study in the impact of multi-year (particularly 10-year) weather scenarios on simulation results in comparison to reference year simulations. This paper presents research using stochastic 1, 2, and 10-year weather data and air infiltration rates to study the range of simulated moisture content outcomes for four wall assemblies in Philadelphia and compares these to the outcomes when using reference years. Results from the study show that air infiltration, starting month, and multi-year duration have significant impacts on simulated moisture content, mold, and corrosion analysis results. Regression analysis using annual averages of climate input parameters did not yield useable models for selecting weather years, however an estimated mold index value using outdoor climate data may be useful in selecting weather years with varying starting months for mold growth assessment.

Open Access
Relevant