183,553 publications found
Sort by
Structural basis for water modulating RNA duplex formation in the CUG repeats of myotonic dystrophy type 1

Secondary structures formed by expanded CUG RNA are involved in the pathobiology of myotonic dystrophy type 1. Understanding the molecular basis of toxic RNA structures can provide insights into the mechanism of disease pathogenesis and accelerate the drug discovery process. Here, we report the crystal structure of CUG repeat RNA containing three U-U mismatches between C-G and G-C base pairs. The CUG RNA crystallizes as an A-form duplex, with the first and third U-U mismatches adopting a water-mediated asymmetric mirror isoform geometry. We found for the first time that a symmetric, water-bridged U-H2O-U mismatch is well tolerated within the CUG RNA duplex, which was previously suspected but not observed. The new water-bridged U-U mismatch resulted in high base-pair opening and single-sided cross-strand stacking interactions, which in turn dominate the CUG RNA structure. Furthermore, we performed molecular dynamics (MD) simulations that complemented the structural findings and proposed that the first and third U-U mismatches are interchangeable conformations, while the central water-bridged U-U mismatch represents an intermediate state that modulates the RNA duplex conformation. Collectively, the new structural features provided in this work are important for understanding the recognition of U-U mismatches in CUG repeats by external ligands such as proteins or small molecules.

Open Access
Relevant
Efficient chimeric antigen receptor targeting of a central epitope of CD22

Chimeric antigen receptor (CAR) T cell therapy has had considerable success in the treatment of B cell malignancies. Targeting the B-lineage markerCD19 has brought great advances to treatment of acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse remains an issue in many cases. Such relapse can result from downregulation or loss of CD19 from the malignant cell population, or expression of alternate isoforms. Consequently, there remains a need to target alternative B-cell antigens and diversify the spectrum of epitopes targeted within the same antigen. CD22 has been identified as a substitute target in cases of CD19-negative relapse. One anti-CD22 antibody - clone m971 - targets a membrane-proximal epitope of CD22 and has been widely validated and used in the clinic. Here we have compared m971-CAR with a novel CAR derived from IS7, an antibody that targets a central epitope on CD22. The IS7-CAR has superior avidity, and is active and specific against CD22 positive targets, including B-ALL patient-derived xenograft (PDX) samples. Side-by-side comparisons indicated that while IS7-CAR killed less rapidly than m971-CAR in vitro, it remains efficient in controlling lymphoma xenograft models in vivo. Thus, IS7-CAR presents a potential alternative candidate for treatment of refractory B-cell malignancies.

Open Access
Relevant
Arachidonic acid reverses cholesterol and zinc inhibition of human voltage-gated proton channels

Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel hHv1 by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule Fluorescence Resonance Energy Transfer (smFRET). Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment towards opening or 'pre-opening' conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in non-excitable cells upon infection or injury.

Open Access
Relevant
Nutrient-dependent regulation of β-cell proinsulin content

Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically-regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1-2 hours; affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid de-phosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its re-phosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α re-phosphorylation with a GCN2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.

Open Access
Relevant