56 publications found
Sort by
Fungal Microbiomes Associated with Green and Non-Green Building Materials.

Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

Relevant
The potential of glycerol in freezing preservation of turbine oil-degrading bacterial consortium and the ability of the revised consortium to degrade petroleum wastes

Abstract The turbine oil (TuO)-degrading bacterial consortium Tank-2 (original Tank-2) was preserved as a glycerol stock at −80 °C from 2009 to 2012. Storage methods have been unavailable so far for any TuO-degrading bacterial consortia or isolates. To evaluate the usefulness of glycerol stock, the original Tank-2 consortium frozen in glycerol at −80 °C was thawed and then revived by repeated culture in mineral salts medium (MSM) containing 0.5% (w/w) TuO (revived Tank-2). The revived Tank-2 consortium exhibited a high activity to degrade TuO, which was equivalent to that of original Tank-2. It also degraded car engine oil, used car engine oil, Arabian light and Vityaz crude oils and TuO in wastewater. These results indicated that a glycerol stock at −80 °C was useful for storing Tank-2. PCR-denaturing gradient gel electrophoresis (DGGE) that targeted the V3 regions of 16S rRNA gene sequences showed that the DGGE band profiles of principal bacteria were significantly different between the original and revived Tank-2 consortia and between the revived Tank-2 culture grown in MSM containing TuO and that grown in MSM containing other types of petroleum products. This suggested that bacterial strains inherently residing in Tank-2 could adjust their compositions based on the storage and culture conditions.

Open Access
Relevant
Assessing the relative bioavailability of copper to fungi degrading treated wood

Copper is ubiquitous as a biocide component in wood preservatives. Some fungi detoxify copper by immobilizing copper ions with oxalate, decreasing its physiological availability (bioavailability). Decreases in copper bioavailability may also occur during wood treatment. To date, however, copper retention in wood has been measured as overall weight-to-volume concentration without an estimate of its bioavailability and without assessment of its relative contribution to preservative efficacy. Here, we gauge the bioavailability of copper ions in treated wood by using oxalate to pre-treat wood prior to colonization by a moderately copper-tolerant fungus. Copper-treated wood was treated with a gradient of sodium oxalate concentrations, rinsed thoroughly, and exposed in soil-block jars to an isolate of Serpula himantioides. Wood treated with copper ethanolamine was extremely effective in preventing decay by S. himantioides, but toxicity could repeatedly be overcome above a threshold level of oxalate pretreatment. In agar plates, copper-treated wood stimulated oxalate production by S. himantioides, but levels were less than those needed (>10 mM) to overcome copper in soil-block jars. This capacity to overcome copper using an oxalate pretreatment was absent in commercially available samples treated with co-biocide(s). Results demonstrate a useful relative measure of copper bioavailability, with potential to be modified for specific quantification.

Relevant
Effect of the fuel system icing inhibitor diethylene glycol monomethyl ether on the biodegradation of jet fuel in soil

Abstract Microbial degradation of jet fuel leads to the accumulation of sludge in fuel distribution systems and storage tanks. To prevent this phenomenon, the biocidal anti-icing inhibitor diethylene glycol monomethyl ether (DiEGME) is routinely added to the fuel. The fate of DiEGME in soil and its consequent effect on the biodegradation of jet fuel by indigenous soil microflora have not been investigated. The aim of this work was to study the kinetics of biodegradation of jet fuel in dark rendzina soil, as affected by the presence of DiEGME. Our data show that the degradability in soil of jet fuel amended with DiEGME was tenfold higher than that of non-amended fuel. Consequently, there was an increase in the jet-fuel-utilizing soil microbial populations during the 100 days of incubation of soil samples amended with jet fuel containing DiEGME. Gas chromatograms of distilled fractions of jet fuel extracted from the soil demonstrated that most of the light fractions' extracts could not be detected at the end of the 100-day incubation. The relative concentration of aromatic compounds in the soil contaminated with DiEGME-amended jet fuel increased during incubation, demonstrating the lower biodegradation rate of these components compared with other fuel components. DiEGME was partially degraded by the general microbial population of the soil. Maximal DiEGME degradation was obtained with specific jet-fuel-utilizing microbial strains – Pseudomonas aeruginosa and Cladosporium resinae – that were added to a carbon-free mineral medium. The degradation rate of DiEGME by specific strains or by soil mixed populations bore an inverse relationship to the DiEGME concentration. The finding that DiEGME can be degraded by indigenous soil microorganisms may have facilitated its utilization also by jet-fuel-degrading microorganisms.

Relevant