3,510 publications found
Sort by
Hybrid, Asymmetric and Reconfigurable Input Unit Designs for Energy-Efficient On-Chip Networks

The complexity and scale of Networks-on-Chip (NoCs) are growing as more processing elements and memory devices are implemented on chips. However, under strict power budgets, it is also critical to lower the power consumption of NoCs for the sake of energy efficiency. In this paper, we therefore present three novel input unit designs for on-chip routers attempting to shrink their power consumption while still conserving the network performance. The key idea behind our designs is to organize buffers in the input units with characteristics of the network traffic in mind; as in our observations, only a small portion of the network traffic are long packets (composed of multiple flits), which means, it is fair to implement hybrid, asymmetric and reconfigurable buffers so that they are mainly targeting at short packets (only having a single flit), hence the smaller power consumption and area overhead. Evaluations show that our hybrid, asymmetric and reconfigurable input unit designs can achieve an average reduction of energy consumption per flit by 45%, 52.3% and 56.2% under 93.6% (for hybrid designs) and 66.3% (for asymmetric and reconfigurable designs) of the original router area, respectively. Meanwhile, we only observe minor degradation in network latency (ranging from 18.4% to 1.5%, on average) with our proposals.

Open Access
A Method for Researching the Influence of Relay Coil Location on the Transmission Efficiency of Wireless Power Transfer System

The transfer distance of the wireless power transfer (WPT) system with relay coil is longer, so this technology have a better practical perspective. But the location of the relay coil has a great impact on the transmission efficiency of the WPT system, and it is not easy to analyze. In order to research the influence law of the relay coil location on the transmission efficiency and obtain the optimal location, the paper firstly proposes the concept of relay coil location factor. And based on the location factor, a novel method for studying the influence of the relay coil location on the transmission efficiency is proposed. First, the mathematical model between the transmission efficiency and the location factor is built. Next, considering the transfer distance, coil radius, coil turns and load resistance, a lot of simulations are carried out to analyze the influence of the location factor on the transmission efficiency, respectively. The influence law and the optimal location factor were obtained with different parameters. Finally, a WPT system with relay coil was built for experiments. And the experiment results verify that the theoretical analysis is correct and the proposed method can simplify the analysis progress of the influence of relay coil location on the transmission efficiency. Moreover, the proposed method and the research conclusions can provide guidance for designing the multiple coils structure WPT system.