Fuzzy clustering decomposes data into clusters using partial memberships by exploring the cluster structure information, which demonstrates comparable performance for knowledge exploitation under the circumstance of information incompleteness. In general, this scheme considers the memberships of objects to cluster centroids and applies to clusters with the spherical distribution. In addition, the noises and outliers may significantly influence the clustering process; a common mitigation measure is the application of separate noise processing algorithms, but this usually introduces multiple parameters which are challenging to be determined for different data types. This paper proposes a new fuzzy-rough intrigued harmonic discrepancy clustering (HDC) algorithm by noting that fuzzy-rough sets offer a higher degree of uncertainty modelling for both vagueness and imprecision present in real-valued datasets. The HDC is implemented by introducing a novel concept of harmonic discrepancy, which effectively indicates the dissimilarity between a data instance and foreign clusters with their distributions fully considered. The proposed HDC is thus featured by a powerful processing ability on complex data distribution leading to enhanced clustering performance, particularly on noisy datasets, without the use of explicit noise handling parameters. The experimental results confirm the effectiveness of the proposed HDC, which generally outperforms the popular representative clustering algorithms on both synthetic and benchmark datasets, demonstrating the superiority of the proposed algorithm.

4,337 publications found

Sort by