7,620 publications found
Sort by
Climate change should drive mammal defaunation in tropical dry forests.

Human-induced climate change has intensified negative impacts on socioeconomic factors, the environment, and biodiversity, including changes in rainfall patterns and an increase in global average temperatures. Drylands are particularly at risk, with projections suggesting they will become hotter, drier, and less suitable for a significant portion of their species, potentially leading to mammal defaunation. We use ecological niche modelling and community ecology biodiversity metrics to examine potential geographical range shifts of non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate impacts of climate change on mammal assemblages. According to projections, 85% of the mammal species will lose suitable habitats, with one quarter of species projected to completely lose suitable habitats by 2060. This will result in a decrease in species richness for more than 90% of assemblages and an increase in compositional similarity to nearby assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized mammals will be the most impacted and lose most of their suitable habitats, especially in highlands. The scenario is even worse in the eastern half of Caatinga where habitat destruction already prevails, compounding the threats faced by species there. While species-specific responses can vary with respect to dispersal, behavior, and energy requirements, our findings indicate that climate change can drive mammal assemblages to biotic homogenization and species loss, with drastic changes in assemblage trophic structure. For successful long-term socioenvironmental policy and conservation planning, it is critical that findings from biodiversity forecasts are considered.

Open Access
Relevant
Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China.

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with increasing incidence and geographic extent. The extent to which global climate change affects the incidence of SFTS disease remains obscure. We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in China. The spatial distribution of habitat suitability for the tick Haemaphysalis longicornis was predicted by applying a boosted regression tree model under four alternative climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) for the periods 2030-2039, 2050-2059, and 2080-2089. We incorporate the SFTS cases in the mainland of China from 2010 to 2019 with environmental variables and the projected distribution of H. longicornis into a generalized additive model to explore the current and future spatiotemporal dynamics of SFTS. Our results demonstrate an expanded geographic distribution of H. longicornis toward Northern and Northwestern China, showing a more pronounced change under the RCP8.5 scenario. In contrast, the environmental suitability of H. longicornis is predicted to be reduced in Central and Eastern China. The SFTS incidence in three time periods (2030-2039, 2050-2059, and 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. A heterogeneous trend across provinces, however, was observed, when an increased incidence in Liaoning and Shandong provinces, while decreased incidence in Henan province is predicted. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for tick control and population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas.

Open Access
Relevant
Performance of Orbicella faveolata larval cohorts does not align with previously observed thermal tolerance of adult source populations.

Orbicella faveolata, commonly known as the mountainous star coral, is a dominant reef-building species in the Caribbean, but populations have suffered sharp declines since the 1980s due to repeated bleaching and disease-driven mortality. Prior research has shown that inshore adult O. faveolata populations in the Florida Keys are able to maintain high coral cover and recover from bleaching faster than their offshore counterparts. However, whether this origin-specific variation in thermal resistance is heritable remains unclear. To address this knowledge gap, we produced purebred and hybrid larval crosses from O. faveolata gametes collected at two distinct reefs in the Upper Florida Keys, a nearshore site (Cheeca Rocks, CR) and an offshore site (Horseshoe Reef, HR), in two different years (2019, 2021). We then subjected these aposymbiotic larvae to severe (36°C) and moderate (32°C) heat challenges to quantify their thermal tolerance. Contrary to our expectation based on patterns of adult thermal tolerance, HR purebred larvae survived better and exhibited gene expression profiles that were less driven by stress response under elevated temperature compared to purebred CR and hybrid larvae. One potential explanation could be the compromised reproductive output of CR adult colonies due to repeated summer bleaching events in 2018 and 2019, as gametes originating from CR in 2019 contained less storage lipids than those from HR. These findings provide an important counter-example to the current selective breeding paradigm, that more tolerant parents will yield more tolerant offspring, and highlight the importance of adopting a holistic approach when evaluating larval quality for conservation and restoration purposes.

Relevant
Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis).

Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.

Open Access
Relevant
Ensemble learning model identifies adaptation classification and turning points of river microbial communities in response to heatwaves.

Heatwaves are a global issue that threaten microbial populations and deteriorate ecosystems. However, how river microbial communities respond to heatwaves and whether and how high temperatures exceed microbial adaptation remain unclear. In this study, we proposed four types of pulse temperature-induced microbial responses and predicted the possibility of microbial adaptation to high temperature in global rivers using ensemble machine learning models. Our findings suggest that microbial communities in parts of South American (e.g., Brazil and Chile) and Southeast Asian (e.g., Vietnam) countries are likely to change due to heatwave disturbance from 25 to 37°C for consecutive days. Furthermore, the microbial communities in approximately 48.4% of the global river gauge stations are prone to fast stress inadaptation, with approximately 76.9% of these stations expected to exceed microbial adaptation after heatwave disturbances. If emissions of particulate matter with sizes not more than 2.5 μm (PM2.5, an indicator of human activities) increase by twofold, the number of global rivers associated with the fast stress adaptation type will decrease by ~13.7% after heatwave disturbances. Understanding microbial responses is crucially important for effective ecosystem management, especially for fragile and sensitive rivers facing heatwave events.

Open Access
Relevant
Ninety years of change, from commercial extinction to recovery, range expansion and decline for Antarctic fur seals at South Georgia.

With environmental change, understanding how species recover from overharvesting and maintain viable populations is central to ecosystem restoration. Here, we reconstruct 90 years of recovery trajectory of the Antarctic fur seal at South Georgia (S.W. Atlantic), a key indicator species in the krill-based food webs of the Southern Ocean. After being harvested to commercial extinction by 1907, this population rebounded and now constitutes the most abundant otariid in the World. However, its status remains uncertain due to insufficient and conflicting data, and anthropogenic pressures affecting Antarctic krill, an essential staple for millions of fur seals and other predators. Using integrated population models, we estimated simultaneously the long-term abundance for Bird Island, northwest South Georgia, epicentre of recovery of the species after sealing, and population adjustments for survey counts with spatiotemporal applicability. Applied to the latest comprehensive survey data, we estimated the population at South Georgia in 2007-2009 as 3,510,283 fur seals [95% CI: 3,140,548-3,919,604] (ca. 98% of global population), after 40 years of maximum growth and range expansion owing to an abundant krill supply. At Bird Island, after 50 years of exponential growth followed by 25 years of slow stable growth, the population collapsed in 2009 and has thereafter declined by -7.2% [-5.2, -9.1] per annum, to levels of the 1970s. For the instrumental record, this trajectory correlates with a time-varying relationship between coupled climate and sea surface temperature cycles associated with low regional krill availability, although the effects of increasing krill extraction by commercial fishing and natural competitors remain uncertain. Since 2015, fur seal longevity and recruitment have dropped, sexual maturation has retarded, and population growth is expected to remain mostly negative and highly variable. Our analysis documents the rise and fall of a key Southern Ocean predator over a century of profound environmental and ecosystem change.

Open Access
Relevant
Global warming changes biomass and C:N:P stoichiometry of different components in terrestrial ecosystems.

Global warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta-analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (-23.34%), root C:P ratio (-12.88%), soil N:P ratio (-14.43%) and soil C:P ratio (-16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.

Relevant
Fungal necromass is reduced by intensive drought in subsoil but not in topsoil.

The frequency and intensity of droughts worldwide are challenging the conservation of soil organic carbon (SOC) pool. Microbial necromass is a key component of SOC, but how it responds to drought at specific soil depths remains largely unknown. Here, we conducted a 3-year field experiment in a forest plantation to investigate the impacts of drought intensities under three treatments (ambient control [CK], moderate drought [30% throughfall removal], and intensive drought [50% throughfall removal]) on soil microbial necromass pools (i.e., bacterial necromass carbon, fungal necromass carbon, and total microbial necromass carbon). We showed that the effects of drought on microbial necromass depended on microbial groups, soil depth, and drought intensity. While moderate drought increased total (+9.1% ± 3.3%) and fungal (+13.5% ± 4.9%) necromass carbon in the topsoil layer (0-15 cm), intensive drought reduced total (-31.6% ± 3.7%) and fungal (-43.6% ± 4.0%) necromass in the subsoil layer (15-30 cm). In contrast, both drought treatments significantly increased the BNC in the topsoil and subsoil. Our results suggested that the effects of drought on the microbial necromass of the subsoil were more pronounced than those of the topsoil. This study highlights the complex responses of microbial necromass to drought events depending on microbial community structure, drought intensity and soil depth with global implications when forecasting carbon cycling under climate change.

Open Access
Relevant
Multi-taxon biodiversity responses to the 2019-2020 Australian megafires.

Conditions conducive to fires are becoming increasingly common and widespread under climate change. Recent fire events across the globe have occurred over unprecedented scales, affecting a diverse array of species and habitats. Understanding biodiversity responses to such fires is critical for conservation. Quantifying post-fire recovery is problematic across taxa, from insects to plants to vertebrates, especially at large geographic scales. Novel datasets can address this challenge. We use presence-only citizen science data from iNaturalist, collected before and after the 2019-2020 megafires in burnt and unburnt regions of eastern Australia, to quantify the effect of post-fire diversity responses, up to 18 months post-fire. The geographic, temporal, and taxonomic sampling of this dataset was large, but sampling effort and species discoverability were unevenly spread. We used rarefaction and prediction (iNEXT) with which we controlled sampling completeness among treatments, to estimate diversity indices (Hill numbers: q = 0-2) among nine broad taxon groupings and seven habitats, including 3885 species. We estimated an increase in species diversity up to 18 months after the 2019-2020 Australian megafires in regions which were burnt, compared to before the fires in burnt and unburnt regions. Diversity estimates in dry sclerophyll forest matched and likely drove this overall increase post-fire, while no taxon groupings showed clear increases inconsistent with both control treatments post-fire. Compared to unburnt regions, overall diversity across all taxon groupings and habitats greatly decreased in areas exposed to extreme fire severity. Post-fire life histories are complex and species detectability is an important consideration in all post-fire sampling. We demonstrate how fire characteristics, distinct taxa, and habitat influence biodiversity, as seen in local-scale datasets. Further integration of large-scale datasets with small-scale studies will lead to a more robust understanding of fire recovery.

Open Access
Relevant