39 publications found
Sort by
Knowledge Graphs: An Information Retrieval Perspective

The aim of this survey is to bridge two important components of modern information access: information retrieval (IR) and knowledge graphs (KGs). Modern IR systems can benefit from information available in KGs in multiple ways, independent of whether the KGs are publicly available or proprietary ones. The authors provide an overview of the literature on KGs in the context of IR and the components required when building IR systems that leverage KGs. As an understanding of the intersection of IR and KGs is beneficial to many researchers and practitioners, they consider prior work from two complementary angles: leveraging KGs for information retrieval and enriching KGs using IR techniques. They summarize research work, group related approaches, and discuss challenges shared across tasks at the interface of IR and KGs. In Knowledge Graphs: An Information Retrieval Perspective, the authors present an extensive overview of tasks related to KGs from an IR perspective, provide a thorough review for each task, and present discussions on common issues that are shared among the tasks. They discuss common issues that appear across the tasks that consider and identify future directions for addressing them. They also provide pointers to datasets and other resources that should be useful for both newcomers and experienced researchers in the area.

Deep Learning for Matching in Search and Recommendation

Matching is the key problem in both search and recommendation, that is to measure the relevance of a document to a query or the interest of a user on an item. Previously, machine methods have been exploited to address the problem, which learns a matching function from labeled data, also referred to as learning to match''. In recent years, deep has been successfully applied to matching and significant progresses have been made. Deep semantic matching models for search and neural collaborative filtering models for recommendation are becoming the state-of-the-art technologies. The key to the success of the deep approach is its strong ability in of representations and generalization of matching patterns from raw data (e.g., queries, documents, users, and items, particularly in their raw forms). In this tutorial, we aim to give a comprehensive survey on recent progress in deep for matching in search and recommendation. Our tutorial is unique in that we try to give a unified view on search and recommendation. In this way, we expect researchers from the two fields can get deep understanding and accurate insight on the spaces, stimulate more ideas and discussions, and promote developments of technologies. The tutorial mainly consists of three parts. Firstly, we introduce the general problem of matching, which is fundamental in both search and recommendation. Secondly, we explain how traditional machine techniques are utilized to address the matching problem in search and recommendation. Lastly, we elaborate how deep can be effectively used to solve the matching problems in both tasks.

Explainable Recommendation: A Survey and New Perspectives

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some contexts). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. It also facilitates system designers for better system debugging. In recent years, a large number of explainable recommendation approaches -- especially model-based methods -- have been proposed and applied in real-world systems. In this survey, we provide a comprehensive review for the explainable recommendation research. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research. 3) We summarize how explainable recommendation applies to different recommendation tasks. We also devote a chapter to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

Open Access