18 publications found
Sort by
Regionalization of the vertebral column and its correlation with heart position in snakes: Implications for evolutionary pathways and morphological diversification.

Spinal regionalization has important implications for the evolution of vertebrate body plans. We determined the variation in the number and morphology of vertebrae across the vertebral column (i.e., vertebral formula) for 63 snake species representing 13 families using intracolumnar variation in vertebral shape. Vertebral counts were used to determine the position of the heart, pylorus, and left kidney for each species. Across all species we observed a conspicuous midthoracic transition in vertebral shape, indicating four developmental domains of the precloacal vertebral column (cervical, anterior thoracic, posterior thoracic, and lumbar). Using phylogenetic analyses, the boundary between the anterior and posterior thoracic vertebrae was correlated with heart position. No associations were found between shifts in morphology of the vertebral column and either the pylorus or left kidney. We observed that among taxa, the number of preapex and postapex vertebrae could change independently from one another and from changes in the total number of precloacal vertebrae. Ancestral state reconstruction of the preapex and postapex vertebrae illustrated several evolutionary pathways by which diversity in the vertebral column and heart position have been attained. In addition, no conspicuous pattern was observed among the heart, pylorus, or kidney indicating that their relative positions to each other evolve independently. We conclude that snakes exhibit four morphologically distinct regions of the vertebral column. We discuss the implications of the forebody and hindbody vertebral formula on the morphological diversification of snakes.

Relevant
Emerging trends in the study of spiralian larvae.

Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.

Open Access
Relevant
Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments.

Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.

Relevant
Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism.

Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.

Relevant
A data-driven framework to model the organism-environment system.

Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism-environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.

Open Access
Relevant
Testing heterochrony: Connecting skull shape ontogeny and evolution of feeding adaptations in baleen whales.

Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry-the relationship between skull shape and size during growth-can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.

Open Access
Relevant
Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells.

The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.

Open Access
Relevant