1,403 publications found
Sort by
From "self-differentiation" to organoids-the quest for the units of development.

As proposed by Wilhelm Roux in 1885, the key goal of experimental embryology ("Entwicklungsmechanik") was to elucidate whether organisms or their parts develop autonomously ("self-differentiation") or require interactions with other parts or the environment. However, experimental embryologists soon realized that concepts like "self-differentiation" only make sense when applied to particular parts or units of the developing embryo as defined both in time and space. Whereas the formation of tissues or organs may initially depend on interactions with surrounding tissues, they later become independent of such interactions or "determined." Moreover, the determination of a particular tissue or organ primordium has to be distinguished from the spatially coordinated determination of its parts-what we now refer to as "patterning." While some primordia depend on extrinsic influences (e.g., signals from adjacent tissues) for proper patterning, others rely on intrinsic mechanisms. Such intrinsically patterned units may behave as "morphogenetic fields" that can compensate for lost parts and regulate their size and proper patterning. While these insights were won by experimental embryologists more than 100 years ago, they retain their relevance today. To enable the generation of more life-like organoids in vitro for studying developmental processes and diseases in a dish, questions about the spatiotemporal units of development (when and how tissues and organs are determined and patterned) need to be increasingly considered. This review briefly sketches this conceptual history and its continued relevance by focusing on the determination and patterning of the inner ear with a specific emphasis on some studies published in this journal.

Relevant
Central projections from Johnston's organ in the locust: Axogenesis and brain neuroarchitecture.

Johnston's organ (Jo) acts as an antennal wind-sensitive and/or auditory organ across a spectrum of insect species and its axons universally project to the brain. In the locust, this pathway is already present at mid-embryogenesis but the process of fasciculation involved in its construction has not been investigated. Terminal projections into the fine neuropilar organization of the brain also remain unresolved, information essential not only for understanding the neural circuitry mediating Jo-mediated behavior but also for providing comparative data offering insights into its evolution. In our study here, we employ neuron-specific, axon-specific, and epithelial domain labels to show that the pathway to the brain of the locust is built in a stepwise manner during early embryogenesis as processes from Jo cell clusters in the pedicel fasciculate first with one another, and then with the two tracts constituting the pioneer axon scaffold of the antenna. A comparison of fasciculation patterns confirms that projections from cell clusters of Jo stereotypically associate with only one axon tract according to their location in the pedicellar epithelium, consistent with a topographic plan. At the molecular level, all neuronal elements of the Jo pathway to the brain express the lipocalin Lazarillo, a cell surface epitope that regulates axogenesis in the primary axon scaffold itself, and putatively during fasciculation of the Jo projections to the brain. Central projections from Jo first contact the primary axon scaffold of the deutocerebral brain at mid-embryogenesis, and in the adult traverse mechanosensory/motor neuropils similar to those in Drosophila. These axons then terminate among protocerebral commissures containing premotor interneurons known to regulate flight behavior.

Open Access
Relevant
Effect of overexpression of KLF4 on the growth and development of hair follicles in mice.

Hair follicle growth is cyclical, and hair cycle dysfunction can lead to hair follicle-related disorders, including alopecia and hirsutism. The objective was to investigate the influence and underlying mechanism of Krüppel-like factor 4 (KLF4) overexpression on hair follicle growth and development in C57BL/6 mice. To provide a theoretical basis for the biological functions of KLF4 gene in hair follicle development and hair follicle cycle, mice were assigned to three groups: experimental, overexpressing KLF4 (Ad-KLF4); control, expressing green fluorescent protein (Ad-NC); and blank, no treatment. Fur was removed from the dorsal surface, and the mice were intradermally injected with 25 μL 1 × 1010 PFU/mL adenovirus vector (Ad-KLF4 or Ad-NC) at three points. Samples were collected for molecular biological and histological analysis. It was found that mRNA and protein levels of Wnt pathway-associated factors β-catenin, LEF1, hair follicle cell proliferation-related factor Ki67, and hair follicle inner caledrin marker AE15 were all significantly greater in the Ad-NC and blank groups than in Ad-KLF4 mice (P < 0.01). These findings were confirmed by immunohistochemical analysis. Hair growth was monitored photographically for 14days, showing an absence of growth in the injected region of the KLF4-overexpressing mice in contrast to non-overexpressing areas where hair growth was normal. HE staining showed that hair follicles in the blank and Ad-NC mice were normal, while those in the KLF4-overexpressing areas remained in telogen or early anagen with spherical dermal papillae situated at the edge of the dermis and subcutaneous tissue without an inner heel sheath. In conclusion, it was found that KLF4 downregulated key Wnt/β-catenin-associated factors during follicular regeneration in mice, reducing both follicular development and growth.

Relevant
The genomic landscape of mammal domestication might be orchestrated by selected transcription factors regulating brain and craniofacial development.

Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.

Open Access
Relevant
Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir.

The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.

Relevant
Thermal plasticity of wing size and wing spot size in Drosophila guttifera.

Thermal plasticity of melanin pigmentation patterns in Drosophila species has been studied as a model to investigate developmental mechanisms of phenotypic plasticity. The developmental process of melanin pigmentation patterns on wings of Drosophila is divided into two parts, prepattern specification during the pupal period and wing vein-dependent transportation of melanin precursors after eclosion. Which part can be affected by thermal changes? To address this question, we used polka-dotted melanin spots on wings of Drosophila guttifera, whose spot areas are specified by wingless morphogen. In this research, we reared D. guttifera at different temperatures to test whether wing spots show thermal plasticity. We found that wing size becomes larger at lower temperature and that different spots have different reaction norms. Furthermore, we changed the rearing temperature in the middle of the pupal period and found that the most sensitive developmental periods for wing size and spot size are different. The results suggest that the size control mechanisms for the thermal plasticity of wing size and spot size are independent. We also found that the most sensitive stage for spot size was part of the pupal period including stages at which wingless is expressed in the polka-dotted pattern. Therefore, it is suggested that temperature change might affect the prepattern specification process and might not affect transportation through wing veins.

Open Access
Relevant
Formation of the brain by stem cell divisions of large neuroblasts in Oikopleura dioica, a simple chordate.

Stem cell division contributes to the generation of various cell types during animal development, especially a diverse pool of neural cells in the nervous system. One example is reiterated unequal stem cell divisions, in which a large stem cell undergoes a series of oriented unequal divisions to produce a chain of small daughter cells that differentiate. We show that reiterated unequal stem cell divisions are involved in the formation of the brain in simple chordate appendicularians (larvaceans). Two large neuroblasts in the anterior and middle of the brain-forming region of hatched larvae were observed. They produced at least 30 neural cells out of 96 total brain cells before completion of brain formation at 10 hours after fertilization by reiterated unequal stem cell divisions. The daughter cells of the anterior neuroblast were postmitotic, and the number was at least 19. The neuroblast produced small daughter neural cells posteriorly every 20 min. The neural cells first moved toward the dorsal side, turned in the anterior direction, aligned in a single line according to their birth order, and showed collective movement to accumulate in the anterior part of the brain. The anterior neuroblast originated from the right-anterior blastomeres of the eight-cell embryos and the right a222 blastomere of the 64-cell embryo. The posterior neuroblast also showed reiterated unequal stem cell divisions, and generated at least 11 neural cells. Sequential unequal stem cell divisions without stem cell growth have been observed in protostomes, such as insects and annelids. The results provide the first examples of this kind of stem cell division during brain formation in non-vertebrate deuterostomes.

Relevant
Duplicated zebrafish (Danio rerio) inositol phosphatases inpp5ka and inpp5kb diverged in expression pattern and function

One hurdle in the development of zebrafish models of human disease is the presence of multiple zebrafish orthologs resulting from whole genome duplication in teleosts. Mutations in inositol polyphosphate 5-phosphatase K (INPP5K) lead to a syndrome characterized by variable presentation of intellectual disability, brain abnormalities, cataracts, muscle disease, and short stature. INPP5K is a phosphatase acting at position 5 of phosphoinositides to control their homeostasis and is involved in insulin signaling, cytoskeletal regulation, and protein trafficking. Previously, our group and others have replicated the human phenotypes in zebrafish knockdown models by targeting both INPP5K orthologs inpp5ka and inpp5kb. Here, we show that inpp5ka is the more closely related orthologue to human INPP5K. While both inpp5ka and inpp5kb mRNA expression levels follow a similar trend in the developing head, eyes, and tail, inpp5ka is much more abundantly expressed in these tissues than inpp5kb. In situ hybridization revealed a similar trend, also showing unique localization of inpp5kb in the pineal gland and retina indicating different transcriptional regulation. We also found that inpp5kb has lost its catalytic activity against its preferred substrate, PtdIns(4,5)P2. Since most human mutations are missense changes disrupting phosphatase activity, we propose that loss of inpp5ka alone can be targeted to recapitulate the human presentation. In addition, we show that the function of inpp5kb has diverged from inpp5ka and may play a novel role in the zebrafish.

Open Access
Relevant
BMP signaling is required to form the anterior neural plate border in ascidian embryos.

Cranial neurogenic placodes have been considered vertebrate innovations. However, anterior neural plate border (ANB) cells of ascidian embryos share many properties with vertebrate neurogenic placodes; therefore, it is now believed that the last common ancestor of vertebrates and ascidians had embryonic structures similar to neurogenic placodes of vertebrate embryos. Because BMP signaling is important for specifying the placode region in vertebrate embryos, we examined whether BMP signaling is also involved in gene expression in the ANB region of ascidian embryos. Our data indicated that Admp, a divergent BMP family member, is mainly responsible for BMP signaling in the ANB region, and that two BMP-antagonists, Noggin and Chordin, restrict the domain, in which BMP signaling is activated, to the ANB region, and prevent it from expanding to the neural plate. BMP signaling is required for expression of Foxg and Six1/2 at the late gastrula stage, and also for expression of Zf220, which encodes a zinc finger transcription factor in late neurula embryos. Because Zf220 negatively regulates Foxg, when we downregulated Zf220 by inhibiting BMP signaling, Foxg was upregulated, resulting in one large palp instead of three palps (adhesive organs derived from ANB cells). Functions of BMP signaling in specification of the ANB region give further support to the hypothesis that ascidian ANB cells share an evolutionary origin with vertebrate cranial placodes.

Relevant