21,176 publications found
Sort by
Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.

Relevant
Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States

•Genomic sequencing from a large outbreak of EEEV in the Northeast US in 2019 •Outbreak caused by several independent, short-lived virus introductions from Florida •Mosquito abundance and infection rate are predictive of human and horse cases •High-quality mosquito surveillance is vital for controlling outbreaks Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control. Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

Open Access
Relevant
The V-type ATPase enhances photosynthesis in marine phytoplankton and further links phagocytosis to symbiogenesis

Diatoms, dinoflagellates, and coccolithophores are dominant groups of marine eukaryotic phytoplankton that are collectively responsible for the majority of primary production in the ocean.1 These phytoplankton contain additional intracellular membranes around their chloroplasts, which are derived from ancestral engulfment of red microalgae by unicellular heterotrophic eukaryotes that led to secondary and tertiary endosymbiosis.2 However, the selectable evolutionary advantage of these membranes and the physiological significance for extant phytoplankton remain poorly understood. Since intracellular digestive vacuoles are ubiquitously acidified by V-type H+-ATPase (VHA),3 proton pumps were proposed to acidify the microenvironment around secondary chloroplasts to promote the dehydration of dissolved inorganic carbon (DIC) into CO2, thus enhancing photosynthesis.4,5 We report that VHA is localized around the chloroplasts of centric diatoms and that VHA significantly contributes to their photosynthesis across a wide range of oceanic irradiances. Similar results in a pennate diatom, dinoflagellate, and coccolithophore, but not green or red microalgae, imply the co-option of phagocytic VHA activity into a carbon-concentrating mechanism (CCM) is common to secondary endosymbiotic phytoplankton. Furthermore, analogous mechanisms in extant photosymbiotic marine invertebrates6,7,8 provide functional evidence for an adaptive advantage throughout the transition from endosymbiosis to symbiogenesis. Based on the contribution of diatoms to ocean biogeochemical cycles, VHA-mediated enhancement of photosynthesis contributes at least 3.5 Gtons of fixed carbon per year (or 7% of primary production in the ocean), providing an example of a symbiosis-derived evolutionary innovation with global environmental implications.

Open Access
Relevant