49 publications found
Sort by
Investigation into the Nucleation of the p-Hydroxybenzoic Acid:Glutaric Acid 1:1 Cocrystal from Stoichiometric and Non-Stoichiometric Solutions.

The nucleation in the p-hydroxybenzoic acid:glutaric acid 1:1 cocrystal (PHBA:GLU) system has been investigated in stoichiometric and non-stoichiometric acetonitrile solutions by induction time experiments. Utilizing the ternary phase diagram, the supersaturated non-stoichiometric solutions were created with compositions along the invariant point boundary lines. In all cases, the PHBA:GLU cocrystal was the nucleating phase, even though the non-stoichiometric solutions were also supersaturated with respect to the pure solid phases. The nucleation of the cocrystal from the mixed solutions is found to be more difficult than the nucleation of the pure compounds from the respective pure solutions, as captured by lower pre-exponential factors (A). However, if the driving force is defined per reactant molecule instead of per heterodimer, the cocrystal nucleation difficulty is close to that of the more difficult-to-nucleate pure compound. The difference in nucleation difficulty of the cocrystal from stoichiometric and non-stoichiometric solutions was captured by differences in the interfacial energy, while the pre-exponential factor remained unchanged. Apart from the pure GLU system, the relation between the experimentally determined pre-exponential factors for the different systems correlates with calculated values using theoretical expressions for volume-diffusion and surface-integration control.

Open Access
Relevant
Amorphous Solid Forms of Ranolazine and Tryptophan and Their Relaxation to Metastable Polymorphs.

Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.

Open Access
Relevant
An Improved Model for Biogenic Ammonium Urate.

The pathological crystallization of ammonium urate inside the urinary tract is a well-documented medical condition; however, structural studies of the biogenic material have proven challenging owing to its propensity to precipitate as a powder and to exhibit diffraction patterns with widely varying intensities. Using block Rietveld refinement methods of powder diffraction data, here we identify ammonium urate hydrate (AUH) as a likely component in natural uroliths. AUH has a planar 2-D hydrogen-bonded organic framework of urate ions separated by ammonium ions with water molecules residing in bisecting channels. AUH is stable up to 150 °C for short time periods but begins to decompose with prolonged heating times and/or at higher temperatures. Changes in the solid-state structure and composition of synthetic material over a temperature range from 25 to 300 °C are elucidated through thermogravimetric and spectroscopic data, combustion analysis, and time-resolved synchrotron powder X-ray diffraction studies. We contend that biogenic ammonium urate is more accurately modeled as a mixture of AUH and anhydrous ammonium urate, in ratios that can vary depending on the growth environment. The similar but not identical diffraction patterns of these two forms likely account for much of the variability seen in natural ammonium urate samples.

Open Access
Relevant
The Role of Operating Conditions in the Precipitation of Magnesium Hydroxide Hexagonal Platelets Using NaOH Solutions.

Magnesium hydroxide, Mg(OH)2, is an inorganic compound extensively employed in several industrial sectors. Nowadays, it is mostly produced from magnesium-rich minerals. Nevertheless, magnesium-rich solutions, such as natural and industrial brines, could prove to be a great treasure. In this work, synthetic magnesium chloride and sodium hydroxide (NaOH) solutions were used to recover Mg(OH)2 by reactive crystallization. A detailed experimental campaign was conducted aiming at producing grown Mg(OH)2 hexagonal platelets. Experiments were carried out in a stirred tank crystallizer operated in single- and double-feed configurations. In the single-feed configuration, globular and nanoflakes primary particles were obtained, as always reported in the literature when NaOH is used as a precipitant. However, these products are not complying with flame-retardant applications that require large hexagonal Mg(OH)2 platelets. This work suggests an effective precipitation strategy to favor crystal growth while, at the same time, limiting the nucleation mechanism. The double-feed configuration allowed the synthesis of grown Mg(OH)2 hexagonal platelets. The influence of reactant flow rates, reactant concentrations, and reaction temperature was analyzed. Scanning electron microscopy (SEM) pictures were also taken to investigate the morphology of Mg(OH)2 crystals. The proposed precipitation strategy paves the road to satisfy flame-retardant market requirements.

Open Access
Relevant
Prediction of the Effective Work Function of Aspirin and Paracetamol Crystals by Density Functional Theory-A First-Principles Study.

Crystals of active pharmaceutical ingredients (API) are prone to triboelectric charging due to their dielectric nature. This characteristic, coupled with their typically low density and often large aspect ratio, poses significant challenges in the manufacturing process. The pharmaceutical industry frequently encounters issues during the secondary processing of APIs, such as particle adhesion to walls, clump formation, unreliable flow, and the need for careful handling to mitigate the risk of fire and explosions. These challenges are further intensified by the limited availability of powder quantities for testing, particularly in the early stages of drug development. Therefore, it is highly desirable to develop predictive tools that can assess the triboelectric propensity of APIs. In this study, Density Functional Theory calculations are employed to predict the effective work function of different facets of aspirin and paracetamol crystals, both in a vacuum and in the presence of water molecules on their surfaces. The calculations reveal significant variations in the work function across different facets and materials. Moreover, the adsorption of water molecules induces a shift in the work function. These findings underscore the considerable impact of distinct surface terminations and the presence of molecular water on the calculated effective work function of pharmaceuticals. Consequently, this approach offers a valuable predictive tool for determining the triboelectric propensity of APIs.

Open Access
Relevant