498 publications found
Sort by
Complete chloroplast genome sequence of Rhododendronmariesii and comparative genomics of related species in the family Ericaeae.

Rhododendronmariesii Hemsley et Wilson, 1907, a typical member of the family Ericaeae, possesses valuable medicinal and horticultural properties. In this research, the complete chloroplast (cp) genome of R.mariesii was sequenced and assembled, which proved to be a typical quadripartite structure with the length of 203,480 bp. In particular, the lengths of the large single copy region (LSC), small single copy region (SSC), and inverted repeat regions (IR) were 113,715 bp, 7,953 bp, and 40,918 bp, respectively. Among the 151 unique genes, 98 were protein-coding genes, 8 were tRNA genes, and 45 were rRNA genes. The structural characteristics of the R.mariesiicp genome was similar to other angiosperms. Leucine was the most representative amino acid, while cysteine was the lowest representative. Totally, 30 codons showed obvious codon usage bias, and most were A/U-ending codons. Six highly variable regions were observed, such as trnK-pafI and atpE-rpoB, which could serve as potential markers for future barcoding and phylogenetic research of R.mariesii species. Coding regions were more conserved than non-coding regions. Expansion and contraction in the IR region might be the main length variation in R.mariesii and related Ericaeae species. Maximum-likelihood (ML) phylogenetic analysis revealed that R.mariesii was relatively closed to the R.simsii Planchon, 1853 and R.pulchrum Sweet,1831. This research will supply rich genetic resource for R.mariesii and related species of the Ericaeae.

Open Access
Relevant
Intraspecific divergence of diploid grass Aegilopscomosa is associated with structural chromosome changes.

Aegilopscomosa Smith in Sibthorp et Smith, 1806 is diploid grass with MM genome constitution occurring mainly in Greece. Two morphologically distinct subspecies - Ae.c.comosa Chennaveeraiah, 1960 and Ae.c.heldreichii (Holzmann ex Boissier) Eig, 1929 are discriminated within Ae.comosa, however, genetic and karyotypic bases of their divergence are not fully understood. We used Fluorescence in situ hybridization (FISH) with repetitive DNA probes and electrophoretic analysis of gliadins to characterize the genome and karyotype of Ae.comosa to assess the level of their genetic diversity and uncover mechanisms leading to radiation of subspecies. We show that two subspecies differ in size and morphology of chromosomes 3M and 6M, which can be due to reciprocal translocation. Subspecies also differ in the amount and distribution of microsatellite and satellite DNA sequences, the number and position of minor NORs, especially on 3M and 6M, and gliadin spectra mainly in the a-zone. Frequent occurrence of hybrids can be caused by open pollination, which, along with genetic heterogeneity of accessions and, probably, the lack of geographic or genetic barrier between the subspecies, may contribute to extremely broad intraspecific variation of GAAn and gliadin patterns in Ae.comosa, which are usually not observed in endemic plant species.

Open Access
Relevant
Comparative karyotype analysis of eight Cucurbitaceae crops using fluorochrome banding and 45S rDNA-FISH.

To have an insight into the karyotype variation of eight Cucurbitaceae crops including Cucumissativus Linnaeus, 1753, Cucumismelo Linnaeus, 1753, Citrulluslanatus (Thunberg, 1794) Matsumura et Nakai, 1916, Benincasahispida (Thunberg, 1784) Cogniaux, 1881, Momordicacharantia Linnaeus, 1753, Luffacylindrica (Linnaeus, 1753) Roemer, 1846, Lagenariasicerariavar.hispida (Thunberg, 1783) Hara, 1948 and Cucurbitamoschata Duchesne ex Poiret, 1819, well morphologically differentiated mitotic metaphase chromosomes were prepared using the enzymatic maceration and flame-drying method, and the chromosomal distribution of heterochromatin and 18S-5.8S-26S rRNA genes (45S rDNA) was investigated using sequential combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. Detailed karyotypes were established using the dataset of chromosome measurements, fluorochrome bands and rDNA FISH signals. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the karyological relationships among species. All the species studied had symmetrical karyotypes composed of metacentric and submetacentric or only metacentric chromosomes, but their karyotype structure can be discriminated by the scatter plot of MCA vs. CVCL. The karyological relationships among these species revealed by PCoA based on x, 2n, TCL, MCA, CVCL and CVCI was basically in agreement with the phylogenetic relationships revealed by DNA sequences. CPD staining revealed all 45S rDNA sites in all species, (peri)centromeric GC-rich heterochromatin in C.sativus, C.melo, C.lanatus, M.charantia and L.cylindrica, terminal GC-rich heterochromatin in C.sativus. DAPI counterstaining after FISH revealed pericentromeric DAPI+ heterochromatin in C.moschata. rDNA FISH detected two 45S loci in five species and five 45S loci in three species. Among these 45S loci, most were located at the terminals of chromosome arms, and a few in the proximal regions. In C.sativus, individual chromosomes can be precisely distinguished by the CPD band and 45S rDNA signal patterns, providing an easy method for chromosome identification of cucumber. The genome differentiation among these species was discussed in terms of genome size, heterochromatin, 45S rDNA site, and karyotype asymmetry based on the data of this study and previous reports.

Open Access
Relevant
Karyotype differentiation in the Nothobranchiusugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography.

The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.

Open Access
Relevant
Chromosome complements of Channa lucius and C. striata from Phu Quoc Island and karyotypic evolution in snakehead fishes (Actinopterygii, Channidae)

Snakehead fishes of the family Channidae are obligatory air-breathers freshwater predators, the vast majority of which belong to the genus Channa Scopoli, 1777. Channa species are characterized by high karyotypic diversity due to various types of chromosomal rearrangements. It is assumed that, in addition to the lifestyle, fragmentation and isolation of snakehead populations contribute to an increase in karyotypic diversity. However, the chromosome complements of many isolated populations of widespread Channa species remain unknown, and the direction of karyotype transformations is poorly understood. This paper describes the previously unstudied karyotypes of Channalucius (Cuvier, 1831) and C.striata (Bloch, 1793) from Phu Quoc Island and analyzes the trends of karyotypic evolution in the genus Channa. In C.lucius, the karyotypes are differed in the number of chromosome arms (2n = 48, NF = 50 and 51), while in C.striata, the karyotypes are differed in the diploid chromosome number (2n = 44 and 43, NF = 48). A comparative cytogenetic analysis showed that the main trend of karyotypic evolution of Channa species is associated with a decrease in the number of chromosomes and an increase in the number of chromosome arms, mainly due to fusions and pericentric inversions. The data obtained support the assumption that fragmentation and isolation of populations, especially of continental islands, contribute to the karyotypic diversification of snakeheads and are of interest for further cytogenetic studies of Channidae.

Open Access
Relevant
Chromosomal polymorphism in natural populations of Chironomus sp. prope agilis Kiknadze, Siirin, Filippova et al., 1991 (Diptera, Chironomidae)

Species Chironomussp.propeagilis Kiknadze, Siirin, Filippova et al., 1991 belongs to the Ch.plumosus group of sibling species. It was described on the basis of its karyotype and analysis of isozymes from one population in the Urals but since then no quantitative data on chromosomal polymorphism of this species have been published. The goal of this study is to broaden our knowledge of the chromosomal polymorphism and distribution of the Chironomussp.propeagilis, which, along with the data on chromosomal polymorphism of other species from the Ch.plumosus group, can give us a better understanding of the connection between chromosomal polymorphism and ecological conditions of habitats. The specimens of Chironomussp.propeagilis were found only in 8 natural populations from the Urals, Western Siberia and Kazakhstan, which allows us to conclude that the species range of Chironomussp.propeagilis is not as wide as for most other species from Ch.plumosus group. An analysis of chromosomal polymorphism in these 8 natural populations of Chironomussp.propeagilis has been performed. All of the studied populations were either monomorphic or showed very low level of chromosomal polymorphism, with 4.4-8.7% of heterozygous specimens per population and 0.04-0.08 heterozygotic inversion per larvae. The total number of banding sequences found in the banding sequence pool of Chironomussp.propeagilis is 10. The mapping of banding sequence p'ag2B3 is presented for the first time. Besides inversions, one reciprocal translocation was found in a population from Kazakhstan, B-chromosome was found in one population from the Urals region of Russia, and heterozygosity of the level of expression of Balbiany rings in arm G was observed in several studied populations.

Open Access
Relevant