2,795 publications found
Sort by
Pregnancy Benefit of Acupuncture on in vitro Fertilization: A Systematic Review and Meta-Analysis.

Currently, more and more infertility couples are opting for combined acupuncture to improve success rate of in vitro fertilization (IVF). However, evidence from acupuncture for improving IVF pregnancy outcomes remains a matter of debate. To quantitatively summarized the evidence of the efficacy of acupuncture among women undergoing IVF by means of systematic review and meta-analysis. Four English (PubMed, Web of Science, EMBASE, and Cochrane Register of Controlled Clinical Trials) and Four Chinese databases (Wanfang Databases, Chinese National Knowledge Infrastructure, Chinese Science and Technology Periodical Database, and SinoMed) were searched from database inception until July 2, 2023. Randomized controlled trials (RCTs) that evaluated the acupuncture's effects for women undergoing IVF were included. The subgroup analysis was conducted with respect to the age of participants, different acupuncture types, type of control, acupuncture timing, geographical origin of the study, whether or not repeated IVF failure, and acupuncture sessions. Sensitivity analyses were predefifined to explore the robustness of results. The primary outcomes were clinical pregnancy rate (CPR) and live birth rate (LBR), and the secondary outcomes were ongoing pregnancy rate and miscarriage rate. Random effects model with I2 statistics were used to quantify heterogeneity. Publication bias was estimated by funnel plots and Egger's tests. A total of 58 eligible RCTs representing 10,968 women undergoing IVF for pregnant success were identifified. Pooled CPR and LBR showed a signifificant difference between acupuncture and control groups [69 comparisons, relative risk (RR) 1.19, 95% confifidence intervals (CI) 1.12 to 1.25, I2=0], extremely low evidence; 23 comparisons, RR 1.11, 95%CI 1.02 to 1.21, I2=14.6, low evidence, respectively). Only transcutaneous electrical acupoint stimulation showed a positive effect on both CPR (16 comparisons, RR 1.17, 95%CI 1.06 to 1.29; I2=0, moderate evidence) and LBR (9 comparisons, RR 1.20, 95%CI 1.04 to 1.37; I2=8.5, extremely low evidence). Heterogeneity across studies was found and no studies were graded as high-quality evidence. Results showed that the convincing evidence levels on the associations between acupuncture and IVF pregnant outcomes were relatively low, and the varied methodological design and heterogeneity might inflfluence the fifindings. (Registration No. PROSPERO CRD42021232430).

Open Access
Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.

To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments. A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed. FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05). FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.

Curcumin Interferes with TGF- β 1-Induced Fibrosis in NRK-49F Cells by Reversing ADAMTS18 Gene Methylation.

To explore the molecular mechanism by which curcumin affects renal interstitial fibrosis (RIF) progression by regulating ADAM metallopeptidase with thrombospondin type 1 motif 18 (ADAMTS18) methylation. NRK-49F cells RIF model were induced with transforming growth factor β 1 (TGF- β 1). Effects of different concentrations of curcumin (0, 10, 20, and 30 μmol/L) on cell proliferation, cell cycle, cell apoptosis as well as cyclin D1 expression were analyzed by cell counting kit-8, flow cytometry and Western blot, respectively. ADAMTS18 methylation levels were determined by methylation-specific polymerase chain reaction. ADAMTS18, fibronectin (FN), type I collagen (Col- I) and alpha-smooth muscle actin (α -SMA) mRNA and protein expressions were analyzed by real-time PCR (RT-PCR) and Western blot, respectively. Meanwhile, cells were treated with 50 mmol/L 5-aza-2'-deoxycytidine (5-aza-dC, demethylation agent) for 72 h. Effect of curcumin on extracellular matrix (ECM) deposition was evaluated by immunochemical staining and Western blot. NRK-49F cells were transfected with ADAMTS18 small interfering RNA and grouped into a normal control, ADAMTS18-knock-out (KO), and ADAMTS18-KO+ 30 μmol/L curcumin groups, and whether curcumin can reverse the effect of ADAMTS18 knockdown on RIF was evaluated. Compared with the control group, TGF-β 1 significantly inhibited the proliferation of NRK-49F cells, blocked the G1/G0 phase, promoted cell apoptosis and inhibited cyclin D1 expression (P<0.01). Among the different concentrations of curcumin, 30 μmol/L curcumin significantly reversed these processes (P<0.01). Immunochemical staining and Western blot results showed that curcumin significantly inhibited the deposition of FN, Col- I and α-SMA (P<0.01). Curcumin and 5-zaz-dC had synergistic effects, promoting ADAMTS18 expression, removing ADAMTS18 methylation, and reducing ECM deposition. ADAMTS18 knockdown promoted ECM accumulation, and curcumin reversed this process (P<0.01). TGF-β 1-induced fibrosis in NRK-49F cells. Curcumin promoted ADAMTS18 expression, reduced ECM accumulation, and alleviated RIF progression by inhibiting ADAMTS18 methylation.

Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.

To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification. Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway. The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway. Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.

Benefit-Risk Assessment of Chinese Medicine Injections for Primary Liver Cancer Based on Multi-criteria Decision Analysis.

To evaluate the benefit-risk of 3 commonly used Chinese medicine injections, Aidi Injection (ADI), Cinobufagin Injection (CINI) and Compound Kushen Injection (CKI), in the treatment of primary liver cancer (PLC), so as to provide a reference for clinical decision-making. Randomized controlled trials (RCTs) of ADI, CINI and CKI in the treatment of PLC published in the databases of China National Knowledge Infrastructure, Wanfang, China Science and Technology Journal Database, SinoMed, PubMed, Cochrane Library, and Web of Science were retrieved from January 2020 to October 2022. The data of benefit and risk indicators were combined to obtain the effect value. The multi-criteria decision analysis (MCDA) model was applied to build the decision tree. The benefit value, risk value and benefit risk value of the 3 injections in PLC treatment were calculated. Monte Carlo simulation was carried out to calculate the 95% confidence interval and probability of differences among the 3 injections, so as to optimize the evaluation results. A total of 71 RCTs were included. The benefit values of ADI, CINI and CKI combined with transcatheter arterial chemoembolization (TACE) were 42, 38 and 36, respectively. The risk values were 42, 25 and 37, respectively. The benefit risk values were 42, 31 and 37, respectively. The benefit risk differences of ADI vs. CINI, ADI vs. CKI, and CKI vs. CINI were 11 (-0.86, 17.75), 5 (-5.01, 11.09), and 6 (-1.87, 12.63), respectively. The probability that ADI superior to CINI, ADI superior to CKI, and CKI superior to CINI was 96.26%, 77.27%, and 92.62%, respectively. Based on the results of MCDA model, CINI combined with TACE has the greatest risk in the treatment of the PLC. Considering the efficacy and safety, the possible priority of the 3 Chinese medicine injections combined with TACE in the treatment of PLC is ADI, CKI and CINI.

Combined Treatment with Bojungikgi-tang (Buzhong Yiqi Decoction) and Riluzole Attenuates Cell Death in TDP-43-Expressing Cells.

To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.

Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.

To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration. HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR. HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05). HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.