1,006 publications found
Sort by
Development and Validation of a Nomogram Model for the Risk of Cardiac Death in Patients Treated with Chemotherapy for Esophageal Cancer.

The primary cause of mortality in esophageal cancer survivors is cardiac death. Early identification of cardiac mortality risk during chemotherapy for esophageal cancer is crucial for improving the prognosis. We developed and validated a nomogram model to identify patients with high cardiac mortality risk after chemotherapy for esophageal cancer for early screening and clinical decision-making. We randomly allocated37,994 patients with chemotherapy-treated esophageal cancer into two groups using a 7:3 split ratio: model training (n = 26,598) and validation (n = 11,396). 5- and 10-year survival rates were used as endpoints for model training and validation. Decision curve analysis and the consistency index (C-index) were used to evaluate the model's net clinical advantage. Model performance was evaluated using receiver operating characteristic curves and computing the area under the curve (AUC). Kaplan-Meier survival analysis based on the prognostic index was performed. Patient risk was stratified according to the death probability. Age, surgery, sex, and year were most closely related to cardiac death and used to plot the nomograms. The C-index for the training and validation datasets were 0.669 and 0.698, respectively, indicating the nomogram's net clinical advantage in predicting cardiac death risk at 5 and 10years. The 5- and 10-year AUCs were 0.753 and 0.772 for the training dataset and 0.778 and 0.789 for the validation dataset, respectively. The accuracy of the model in predicting cardiac death risk was moderate. This nomogram can identify patients at risk of cardiac death after chemotherapy for esophageal cancer at an early stage.

Relevant
Systematical Evaluation of the Structure-Cardiotoxicity Relationship of 7-Azaindazole-based PI3K Inhibitors Designed by Bioisosteric Approach.

A growing concern of cardiotoxicity induced by PI3K inhibitors has raised the requirements to evaluate the structure-cardiotoxicity relationship (SCR) in the development process of novel inhibitors. Based on three bioisosteric 7-azaindazole-based candidate inhibitors namely FD269, FD268 and FD274 that give same order of inhibitory concentration 50% (IC50) magnitude against PI3Ks, in this work, we proposed to systematically evaluate the SCR of 7-azaindazole-based PI3K inhibitors designed by bioisosteric approach. The 24-h lethal concentrations 50% (LC50) of FD269, FD268 and FD274 against zebrafish embryos were 0.35, 4.82 and above 50μM (not detected), respectively. Determination of the heart rate, pericardial and yolk-sac areas and vascular malformation confirmed the remarkable reduction in the cardiotoxicity of from FD269 to FD268 and to FD274. The IC50s of all three compounds against the hERG channel were tested on the CHO cell line that constitutively expressing hERG channel, which were all higher than 20μM. The transcriptomic analysis revealed that FD269 and FD268 induced the up-regulation of noxo1b, which encodes a subunit of an NADPH oxidase evoking the oxidative stress. Furthermore, immunohistochemistry tests confirmed the structure-dependent attenuation of the overproduction of ROS and cardiac apoptosis. Our results verified the feasibility of bioisosteric replacement to attenuate the cardiotoxicity of 7-azaindazole-based PI3K inhibitors, suggesting that the screening for PI3K inhibitors with both high potency and low cardiotoxicity from bioisosteres would be a beneficial trial.

Relevant
Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway.

Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.

Relevant
Δ9-Tetrahydrocannabinol Effects on Respiration and Heart Rate Across Route of Administration in Female and Male Mice.

The physiological impact of cannabinoid receptor agonists is of great public health interest due to their increased use in recreational and therapeutic contexts. However, the body of literature on cannabinoid receptor agonists includes multiple confounding variables that complicate comparisons across studies, including route of administration, timeline across which phenotypes are observed, agonist dose, and sex of the study cohort. In this study, we characterized the impact of sex and route of administration on Δ9-tetrahydrocannabinol (THC)-induced changes in cardiopulmonary phenotypes in mice. Using noninvasive plethysmography and telemetry, we monitored heart rate and respiration in the same cohort of animals across aerosol, oral gavage, subcutaneous, and intraperitoneal administrations of THC (0-30mg/kg THC for oral gavage, subcutaneous, and intraperitoneal, and 0-300mg/ml THC for aerosol). All routes of THC administration altered respiratory minute volume and heart rate, with the direction of effects typically being consistent across dependent measures. THC primarily decreased respiration and heart rate, but females given oral gavage THC showed increased heart rate. Intraperitoneal and subcutaneous THC produced the longest-lasting effects, including THC-induced alterations in physiological parameters for up to 10h, whereas effects of aerosolized THC were short lived. The fastest onset of effects of THC occurred for aerosolized and intraperitoneal THC. Altogether, the work herein establishes the impact of dosing route on THC-induced heart rate and respiratory alteration in male and female mice. This study highlights important differences in the timeline of cardiopulmonary response to THC following the most common preclinical routes of administration.

Relevant
Klotho/FGF23 Axis Regulates Cardiomyocyte Apoptosis and Cytokine Release through ERK/MAPK Pathway.

Coronary artery disease (CAD) as a major cardiovascular disease is the leading global cause of mortality, Klotho/FGF23 axis involved in development of cardiovascular disease, while the function and underlying mechanism of Klotho/FGF23 axis in CAD is unclear. Blood samples from 67 CAD patients with coronary artery bypass graft (CABG) surgery were collected, and the level of Klotho and FGF23 of those patients was measured by using an ELISA kit. Cardiomyocyte was isolated from 0 to 3days Sprague Dawley (SD) rats. Expression of Klotho, FGF23 and the cardiomyocyte marker α-sarcomeric actin (α-SA), myosin heavy chain (MHC) and cardiac troponin I (cTnI) was assessed by immunofluorescence staining. Expression of Klotho and FGF23 mRNA was detected by qRT-PCR. Apoptosis and cell cycle were measured by flow cytometry. Cell viability was detected by using CCK-8. The protein expression of ERK/MAPK pathway related protein and cytokines production was measured by western blotting. The levels of Klotho in CAD patients increased after CABG surgery, while FGF23 decreased. Isolated cardiomyocyte morphology and structure were completed, and with stabilized beating within culture for 15days, besides, α-SA, MHC, and cTnI proved positive. After transfected Lenti-Klotho and Lenti-FGF23 into isolated cardiomyocyte, fluorescence staining showed that the transfection was successful, and qRT-PCR results showed that the expression levels of Klotho and FGF23 mRNA significant increased compared with NEG (empty vector) group. Immunofluorescence staining results showed that compared with NEG group, there was a higher Klotho positive rate and lower FGF23 positive rate in Klotho overexpression (Klotho) group, while, there was a higher FGF23 positive rate and lower Klotho positive rate in FGF23 overexpression (FGF23) group. In addition, the expression of p-ERK1/2 and p-P38 increased in Klotho group but decreased in FGF23 group. Furthermore, overexpression of Klotho inhibited cardiomyocyte apoptosis, increased S phase fraction, promoted proliferation and elevated expression of transforming growth factor β1 (TGF-β1), nuclear factor-kappa B (NF-κB), angiotensin-II (AT-II), and activator protein-1 (AP-1), overexpression of FGF23 showed the opposite effect, however, ERK agonist (TPA) and inhibitor (U0126) reversed the effect caused by overexpression of Klotho and FGF23 separately. Klotho/FGF23 axis play a critical role in CAD progression through regulating ERK/MAPK pathway in Cardiomyocyte.

Relevant
Exploration of Key Immune-Related Transcriptomes Associated with Doxorubicin-Induced Cardiotoxicity in Patients with Breast Cancer

Based on a few studies, heart failure patients with breast cancer were assessed to find potential biomarkers for doxorubicin-induced cardiotoxicity. However, key immune-related transcriptional markers linked to doxorubicin-induced cardiotoxicity in breast cancer patients have not been thoroughly investigated. We used GSE40447, GSE76314, and TCGA BRCA cohorts to perform this study. Then, we performed various bioinformatics approaches to identify the key immune-related transcriptional markers and their association with doxorubicin-induced cardiotoxicity in patients with breast cancer. We found 255 upregulated genes and 286 downregulated genes in patients with doxorubicin-induced heart failure in breast cancer. We discovered that in patients with breast cancer comorbidity doxorubicin-induced cardiotoxicity, the 58 immunological genes are elevated (such as CPA3, VSIG4, GATA2, RFX2, IL3RA, and LRP1), and the 60 genes are significantly suppressed (such as MS4A1, FCRL1, CD200, FCRLA, FCRL2, and CD79A). Furthermore, we revealed that the immune-related differentially expressed genes (DEGs) are substantially associated with the enrichment of KEGG pathways, including B-cell receptor signaling pathway, primary immunodeficiency, chemokine signaling pathway, hematopoietic cell lineage, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, focal adhesion, dilated cardiomyopathy, cell adhesion molecule, etc. Moreover, we discovered that the doxorubicin-induced immune-related genes are crucially involved in the protein–protein interaction and gene clusters. The immune-related genes, including IFIT5, XCL1, SPIB, BTLA, MS4A1, CD19, TCL1A, CD83, CD200, FCRLA, CD79A, BIRC3, and IGF2R are significantly associated with a poor survival prognosis of breast cancer patients and showed diagnostic efficacy in patients with breast cancer and heart failure. Molecular docking revealed that the survival-associated genes interact with the doxorubicin with appreciable binding affinity. Finally, we validated the expression level of immune-related genes in breast cancer patients-derived cardiomyocytes with doxorubicin-induced cardiotoxicity and found that the level of RAD9A, HSPA1B, GATA2, IGF2R, CD200, ERCC8, and BCL11A genes are consistently dysregulated. Our findings offered a basis for understanding the mechanism and pathogenesis of the cardiotoxicity caused by doxorubicin in breast cancer patients and predicted the interaction of immune-related potential biomarkers with doxorubicin.

Open Access
Relevant
Suberosin Alleviates Thiazolidinedione-Induced Cardiomyopathy in Diabetic Rats by Inhibiting Ferroptosis via Modulation of ACSL4-LPCAT3 and PI3K-AKT Signaling Pathways.

Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90mg/kg/day) with thiazolidinedione (TZ at 15mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3β as compared to the group administered with TZ at 15mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.

Open Access
Relevant
Targeting Retinol-Binding Protein 4 (RBP4) in the Management of Cardiometabolic Diseases.

The ancient use of herbs for the treatment of various human diseases have been documented, with several scientific literatures supporting the use of medicinal plants. There is however a major concern about the phyto-constituents in the plants that performs the healing function and the mechanism by which it works for different ailments are still a research prospect. Cardiometabolic disease (CMD) is no doubt becoming more frequent globally and this is due to poor approach in therapy, contrary effects linked with intensive control, inept strategies with old drugs, inadequate control of some risk factors and lack of knowledge of the pathophysiological mechanisms that lead to this malaise. Retinol-binding protein 4 (RBP4) are predominantly secreted in the liver and adipose tissues and several researches have observed that elevation in serum levels of RBP4 often observed in obese experimental animals and human subjects causes CMD (obesity, insulin resistance, hyperlipidemia, etc.). RBP4 has gained special attention in the last 20years in the field of metabolism research. This review aims to show research interaction of some medicinal plants targeting RBP4 in treating CMD and to encourage researchers, who are interested in CMD drug design, to focus on medicinal plants that inhibit the secretion of serum RBP4 in the adipose tissue for therapeutic approach to CMD. It also aims to identify the major bioactive compounds of plants that serves as a better and cheaper drug candidate for CMD and also study the signaling pathway which the plant material uses to regulate the metabolic consequences.

Relevant
COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway.

Cartilage oligomeric matrix protein (COMP) regulates transforming growth factor-β (TGF-β) signaling pathway, which has been proved to be associated with skin fibrosis and pulmonary fibrosis. Atrial fibrosis is a major factor of atrial fibrillation (AF). Nevertheless, the interaction between COMP and TGF-β as well as their role in AF remains undefined. The purpose of this study is to clarify the role of COMP in AF and explore its potential mechanism. The hub gene of AF was identified from two datasets using bioinformatics. Furthermore, it was verified by the downregulation of COMP in angiotensin-II (Ang-II)-induced AF in mice. Moreover, the effect on AF was examined using CCK8 assay, ELISA, and western blot. The involvement of TGF-β pathway was further discussed. The expression of COMP was the most significant among all these hub genes. Our experimental results revealed that the protein levels of TGF-β1, phosphorylated Smad2 (P-Smad2), and phosphorylated Smad3 (P-Smad3) were decreased after silencing COMP, which indicated that COMP knockdown could inhibit the activation of TGF-β pathway in AF cells. However, the phenomenon was reversed when the activator SRI was added. COMP acts as a major factor and can improve Ang-II-induced AF via TGF-β signaling pathway. Thus, our research enriches the understanding of the interaction between COMP and TGF-β in AF, and provides reference for the pathogenesis and diagnosis of AF.

Relevant