2,482 publications found
Sort by
Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum

Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.

Open Access
Relevant
Neurovascular coupling during auditory stimulation: event-related potentials and fNIRS hemodynamic

Intensity-dependent amplitude changes (IDAP) have been extensively studied using event-related potentials (ERPs) and have been linked to several psychiatric disorders. This study aims to explore the application of functional near-infrared spectroscopy (fNIRS) in IDAP paradigms, which related to ERPs could indicate the existence of neurovascular coupling. Thirty-three and thirty-one subjects participated in two experiments, respectively. The first experiment consisted of the presentation of three-tone intensities (77.9 dB, 84.5 dB, and 89.5 dB) lasting 500 ms, each type randomly presented 54 times, while the second experiment consisted of the presentation of five-tone intensities (70.9 dB, 77.9 dB, 84.5 dB, 89.5 dB, and 94.5 dB) in trains of 8 tones lasting 70 ms each tone, the trains were presented 20 times. EEG was used to measure ERP components: N1, P2, and N1–P2 peak-to-peak amplitude. fNIRS allowed the analysis of the hemodynamic activity in the auditory, visual, and prefrontal cortices. The results showed an increase in N1, P2, and N1–P2 peak-to-peak amplitude with auditory intensity. Similarly, oxyhemoglobin and deoxyhemoglobin concentrations showed amplitude increases and decreases, respectively, with auditory intensity in the auditory and prefrontal cortices. Spearman correlation analysis showed a relationship between the left auditory cortex with N1 amplitude, and the right dorsolateral cortex with P2 amplitude, specifically for deoxyhemoglobin concentrations. These findings suggest that there is a brain response to auditory intensity changes that can be obtained by EEG and fNIRS, supporting the neurovascular coupling process. Overall, this study enhances our understanding of fNIRS application in auditory paradigms and highlights its potential as a complementary technique to ERPs.

Open Access
Relevant
Hypothalamus volumes in adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): impact of self-reported fatigue and illness duration

Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex illness of unknown aetiology. Emerging theories suggest ME/CFS may reflect a progressive, aberrant state of homeostasis caused by disturbances within the hypothalamus, yet few studies have investigated this using magnetic resonance imaging in adolescents with ME/CFS. We conducted a volumetric analysis to investigate whether whole and regional hypothalamus volumes in adolescents with ME/CFS differed compared to healthy controls, and whether these volumes were associated with fatigue severity and illness duration. 48 adolescents (25 ME/CFS, 23 controls) were recruited. Lateralised whole and regional hypothalamus volumes, including the anterior–superior, superior tubular, posterior, anterior-inferior and inferior tubular subregions, were calculated from T1-weighted images. When controlling for age, sex and intracranial volume, Bayesian linear regression models revealed no evidence for differences in hypothalamus volumes between groups. However, in the ME/CFS group, a weak linear relationship between increased right anterior–superior volumes and fatigue severity was identified, which was absent in controls. In addition, Bayesian quantile regression revealed a likely-positive association between illness duration and right superior tubular volumes in the ME/CFS group. While these findings suggest overall comparability in regional and whole hypothalamus volumes between adolescents with ME/CFS and controls, preliminary evidence was identified to suggest greater fatigue severity and longer illness duration were associated with greater right anterior–superior and superior-tubular volumes, respectively. These regions contain the anterior and superior divisions of the paraventricular nucleus, involved in the neuroendocrine response to stress, suggesting involvement in ME/CFS pathophysiology. However, replication in a larger, longitudinal cohort is required.

Open Access
Relevant
Modulation of resting-state networks following repetitive transcranial alternating current stimulation of the dorsolateral prefrontal cortex

Transcranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training. Fifty healthy participants (25 males and 25 females) were randomly assigned to the experimental and sham groups, half of the participants received individually adjusted theta band tACS, and half received sham stimulation. Resting-state functional magnetic resonance (rs-fMRI) and diffusion-weighted imaging (DWI) data were collected before and after 3 days of tACS-supported procedural learning training. Resting-state network analysis showed a significant increase in connectivity for the frontoparietal network (FPN) with the precuneus cortex. Seed-based analysis with a seed defined at the primary stimulation site showed an increase in connectivity with the precuneus cortex, posterior cingulate cortex (PCC), and lateral occipital cortex. There were no effects on the structural integrity of white matter tracts as measured by fractional anisotropy, and on behavioral measures. In conclusion, the study suggests that multi-session task-associated tACS can produce significant changes in resting-state functional connectivity; however, changes in functional connectivity do not necessarily translate to changes in white matter structure or behavioral performance.

Open Access
Relevant
A new 3D myeloarchitectonic map of the human neocortex based on data from the Vogt–Vogt school

During the period extending from 1900 to 1970, Oskar and Cécile Vogt and their numerous collaborators (‘the Vogt–Vogt school’) published a large number of studies on the myeloarchitecture of the human cerebral cortex. During the last decade, we have concerned ourselves with a detailed meta-analysis of these now almost totally forgotten studies, with the aim to bringing them into the modern era of science. This scrutiny yielded inter alia a myeloarchitectonic map of the human neocortex, showing a parcellation into 182 areas (Nieuwenhuys et al. in Brain Struct Funct 220:2551–2573, 2015; Erratum in Brain Struct Funct 220: 3753–3755, 2015). This map, termed 2D’15, which is based on data derived from all of the 20 publications constituting the myeloarchitectonic legacy of the Vogt–Vogt school, has the limitation that it is two-dimensional i.e. it shows only the parts of the cortex exposed at the free surface of the cerebral hemispheres and not the extensive stretches of cortex hidden in the cortical sulci. However, a limited set of data, derived from four of the 20 publications available, has enabled us to create a 3D map, showing the myeloarchitectonic parcellation of the entire human neocortex. This map, designated as 3D′23, contains 182 areas: 64 frontal, 30 parietal, 6 insular, 19 occipital and 63 temporal. We have also prepared a 2D version (2D′23), of this 3D′23 map to serve as a link between the latter and our original 2D′15 map. Detailed comparison of the parcellations visualized in our three maps (2D′15, 2D′23 and 3D′23) warrants the conclusion that our new 3D′23 map may be considered as representative for the entire myeloarchitectural legacy of the Vogt–Vogt School. Hence it is now possible to compare the rich amount of myeloarchitectonic data assembled by that school directly with the results of current 3D analyses of the architecture of the human cortex, such as the meticulous quantitative cyto- and receptor architectonic studies of Zilles, Amunts and their numerous associates (Amunts et al. in Science 369:988–992, 2020), and the multimodal parcellation of the human cortex based on magnetic resonance images from the Human Connectome Project, performed by Glasser et al. in Nature 536:171–178, 2016).

Open Access
Relevant
The hierarchical organization of the precuneus captured by functional gradients

The precuneus shows considerable heterogeneity in multiple dimensions including anatomy, function, and involvement in brain disorders. Leveraging the state-of-the-art functional gradient approach, we aimed to investigate the hierarchical organization of the precuneus, which may hold promise for a unified understanding of precuneus heterogeneity. Resting-state functional MRI data from 793 healthy individuals were used to discover and validate functional gradients of the precuneus, which were calculated based on the voxel-wise precuneus-to-cerebrum functional connectivity patterns. Then, we further explored the potential relationships of the precuneus functional gradients with cortical morphology, intrinsic geometry, canonical functional networks, and behavioral domains. We found that the precuneus principal and secondary gradients showed dorsoanterior-ventral and ventroposterior-dorsal organizations, respectively. Concurrently, the principal gradient was associated with cortical morphology, and both the principal and secondary gradients showed geometric distance dependence. Importantly, precuneus functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along both gradients in a hierarchical manner, i.e., from the sensorimotor network (somatic movement and sensation) at one extreme to the default mode network (abstract cognitive functions) at the other extreme for the principal gradient and from the visual network (vision) at one end to the dorsal attention network (top-down control of attention) at the other end for the secondary gradient. These findings suggest that the precuneus functional gradients may provide mechanistic insights into the multifaceted nature of precuneus heterogeneity.

Open Access
Relevant