453 publications found
Sort by
Potential of algal-based products for the management of potato brown rot disease.

Ralstonia solanacearum causes potato brown rot disease, resulting in lower crop's production and quality. A sustainable and eco-friendly method for controlling the disease is required. Algae's bioactive chemicals have shown the potential to enhance plant defenses. For the first time, the efficacy of foliar application of Acanthophora spicifera and Spirulina platensis seaweed extracts, along with the utilization of dried algal biomasses (DABs) of Turbinaria ornata and a mixture of Caulerpa racemosa and Cystoseira myrica (1:1)on potato yield and brown rot suppression were investigated under field conditions. Field experiments were conducted in three locations: Location 1 (Kafr Shukr district, Kaliobeya governorate), Location 2 (Moneira district, Kaliobeya governorate), and Location 3 (Talia district, Minufyia governorate). Locations 1 and 2 were naturally infested with the pathogen, while location 3 was not. The study evaluated potato yield, plant nutritive status and antioxidants, soil available nitrogen-phosphorus-potassium (N-P-K), and organic matter percentage. Additionally, the shift in soil microbial diversity related to R. solanacearum suppression was examined for the most effective treatment. The results revealed that seaweed extracts significantly increased potato yield at all locations, which correlated with higher phosphorus absorption, while T. ornate DAB increased potato yield only at location 2, accompanied by noticeable increases in soil nitrogen and plant phosphorus. The mixed DABs of C. racemosa and C. myrica demonstrated greater disease suppression than foliar applications. The disease-suppressive effect of the mixed DABs was accompanied by significant increases in flavonoids and total antioxidant capacity (TAC). Moreover, the application of mixed DABs increased soil bacterial biodiversity, with a higher abundance of oligotrophic marine bacterial species such as Sphingopyxis alaskensis and growth-promoting species like Glutamicibacter arilaitensis, Promicromonospora sp., and Paenarthrobacter nitroguajacolicus in all three locations compared to the untreated control. Klebsiella sp., Pseudomonas putida, and P. brassicacearum abundances were increased by the mixed DABs in Location 1. These species were less abundant in locations 2 and 3, where Streptomyces sp., Bacillus sp., and Sphingobium vermicomposti were prevalent. The results demonstrated that the used seaweed extracts improved potato yield and phosphorous absorption, while the mixed DABs potentially contributed in disease suppression and improved soil microbial diversity.

Relevant
Changes in soil organic carbon and nitrogen stocks in organic farming practice and abandoned tea plantation

BackgroundThe restoration of conventional tea plantations and the adoption of organic farming practices could impact soil organic carbon (SOC) and nitrogen (N) stocks. This study investigated the soil properties, SOC and N contents and stocks, and their vertical distributions of a secondary forest restored from an abandoned conventional tea plantation and a converted organic tea plantation. An adjacent conventional tea plantation employing similar intermediate farming served as a comparison.ResultsWithin a 50-cm depth, the secondary forest exhibited a higher SOC stock of 115.53 ± 7.23 Mg C ha− 1 compared to 92.1 ± 8.54 Mg C ha− 1 for the conventional tea plantation. No significant differences in N stocks were seen between the two land uses. Significantly high SOC and N contents and stocks were found in the 0–10 cm layer of the secondary forest compared to the conventional tea plantation. No significant disparities in SOC and N stocks were found between the conventional and organic tea plantations within the 50 cm depth (92.1 ± 8.54 Mg C ha− 1 and 10.06 ± 1.01 Mg N ha− 1 vs. 97.47 ± 1.53 Mg C ha− 1 and 9.70 ± 0.10 Mg N ha− 1). However, higher levels of SOC and N contents and stocks were observed at a depth of 10 cm in the conventional tea plantation and below 10 cm in the organic tea plantation.ConclusionsThe C and N inputs derived from high litter production at the top soil strongly contributed to higher SOC and N contents and stocks in the secondary forest. The application of soybean amendments in the conventional tea plantation and the longer tea plantation age of the organic tea plantation influenced their distribution of SOC and N contents and stocks, respectively. Reverting a conventional tea plantation into a secondary forest contributed to C recovery and reaccumulation. The conventional tea plantation, employing similar intermediate farming practices, increased SOC and N contents and stocks in the surface soil compared to the organic tea plantation. However, adopting organic farming did not significantly increase SOC stocks compared to the conventional tea plantation.

Open Access
Relevant
Climbing strategies of Taiwan climbers

BackgroundThe climbing strategies of lianas and herbaceous vines influence climber competition abilities and survival. The aim of this study was to investigate the climbing strategies of each plant species and observe their organs of origin.ResultsThe results showed that all Taiwan climbers were approximately 555 species, accounting for 11% of the native flora. Among the 555 climbers, the twining stem type was the most common, with a total of 255 species (46%), the remaining climbing methods accounted for 300 species. Approximately twenty one climbing methods, including nine combination types, were exhibited, of which the most common type was the twining stem, followed by simple scrambling and twining tendrils. Most species of Fabaceae and Apocynaceae were twining stems in dextrorse, excluding Wisteriopsis reticulata and Alyxia taiwanensis, which were in sinistrorse. The prehensile branch of Fissistigma genus, Ventilago genus, and Dalbergia benthamii, originated from second-order or modified stems. In the simple scrambling type, some climbers were covered spines and prickles to attach the host, and the others were clinging to the supports or creeping on the ground without speculation. The hooks or grapnels of the genus Uncaria are derived from the branches, and a pair of curved hooks or a spine of Artabotrys hexapetalus are originated from the inflorescence to tightly attach to a host. The Piper genus use adhesive roots to climb their hosts. Among the genus Trichosanthes, only Trichosanthes homophylla exhibits a combination of twining modified shoots and adhesive roots. Gentianales includes four families with seven climbing mechanisms, while Fabales includes only Fabaceae, which presents six climbing methods.ConclusionsThe twining tendrils had nine organs of origin in Taiwan climber, that these opinions of originated organs might be available to the studies of convergent evolution. The data presented herein provide crucial basic information of the climber habits types and origin structures, which are available for terms standardization to improve field investigation. The terminologies would aid in the establishment of climber habits as commonly taxon-specific and the combination of two climber habits could be a characteristic of taxonomic value.

Open Access
Relevant
L-DOPA induces iron accumulation in roots of Ipomoea aquatica and Arabidopsis thaliana in a pH-dependent manner

BackgroundIron deficiency is the leading cause of anemia worldwide, particularly in countries with predominant plant-based diets. Plants constitute the main source of dietary iron. Increasing their iron concentration could reduce the occurrence of anemia. The water spinach Ipomoea aquatica is consumed as a vegetable throughout Asia and tolerates high iron concentrations making it an attractive candidate for iron biofortification. L-DOPA is an allelopathic molecule secreted by some legumes. L-DOPA can trigger the expression of Fe deficiency-inducible genes, and could potentially be used as a biostimulant to increase Fe concentration.ResultsL-DOPA significantly affected root growth of water spinach, and triggered a massive accumulation of Fe in roots. Both effects were exacerbated when L-DOPA was dissolved in KOH, which is surprising given that L-DOPA is less stable at high pH. To check whether a higher pH could indeed increase the bioactivity of L-DOPA, we used Arabidopsis thaliana, which grows at lower pH than water spinach, and subjected the plants to L-DOPA treatments at pH 5.5 and pH 6.0, which are both within the optimal range for Arabidopsis nutrition. At pH 6.0, the root growth of Arabidopsis was more strongly inhibited than at pH 5.5. We found that at higher pH, L-DOPA oxidizes to form a melanin precipitate.ConclusionsWe concluded that the oxidation of L-DOPA that we observed upon solubilization in KOH, or in nutrient solutions at slightly higher pH produces melanin-related molecules that are more potent than L-DOPA itself to trigger the primary root growth inhibition, Fe uptake and root Fe accumulation in water spinach and Arabidopsis.

Open Access
Relevant
Investigation of phytotherapeutic potential of herbal mixtures and their effects on salbutamol induced cardiotoxicity and hyperlipidemia in rabbits

BackgroundCardiovascular diseases (CVDs) are the major cause of deaths all over the world. The high level of blood cholesterol and oxidative stress are major risk factors for heart diseases. The phytotherapeutics have attracted attention as potential agents for preventing and treating oxidative stress associated diseases. The objective of present study was to evaluate the synergetic cardio-protective and antilipidemic potential of medicinal plants viz. Coriandrum sativum, Piper nigrum and Cactus grandiflorus. Cardio-protective and anti-lipidemic potential of herbal mixture was evaluated against salbutamol induced cardiotoxicity in rabbits. For this purpose, rabbits were divided into six groups as normal control, salbutamol control, curative and standard drug curative.ResultsSalbutamol significantly (p < 0.05) increased the level of serum cardiac biomarkers (ALT, CK-MB, AST and LDH) and lipids (LDL, triglycerides, cholesterol) in rabbits. The prior and post administration of herbal mixture significantly (p < 0.05) lowered the elevated level of serum cardiac biomarkers and lipids equal to normal control. Gross pathological examination revealed that heart of salbutamol control animals became hardened, congested and were enlarged than preventive and curative groups. The phytotherapeutic analysis of medicinal plants revealed the presence of phenols, tannins, alkaloids and steroids.ConclusionThe results showed that this herbal mixture has strong cardio-protective and anti-lipidemic potential.

Open Access
Relevant
Using homemade stainless steel dendrometer band for long term tree growth measurements

Dendrometer bands have been proposed as an accurate method for measuring tree growth. However, the constrained observation window and the material used in them hamper long-term tree growth monitoring. This study devised a dendrometer band made from stainless steel and primarily extended the extension length of the band spring to yield ample space to monitor diameter increments long-term. A total of more than 500 individual trees, including both coniferous and broadleaf trees, were examined. We compared the dendrometer band’s long-term performance with diameter tape for 5- and 10-year measurements. The results showed that the measurements of the two methods were highly correlated (R > 0.89) in both measuring periods. Differences between the two measurements for individual trees were typically less than 5 mm, and the mean differences at a stand level were less than 2 mm. These consistent observations suggested that the dendrometer band measurements were reliable for long-term measurement. Using the dendrometer bands, we further demonstrated the annual tree growths of diameter at breast height (DBH) and basal area (BA) for ten years of measurements. The size-dependent relationships between DBH/BA growth and initial DBH were also presented. Owing to their simple installation, low cost, and reliable measurement, these dendrometer bands would be helpful in forestry and forest ecology research.

Open Access
Relevant
Management of potato brown rot disease using chemically synthesized CuO-NPs and MgO-NPs

BackgroundPotatoes are a crucial vegetable crop in Egypt in terms of production and consumption. However, the potato industry suffers significant annual losses due to brown rot disease. This study aimed to suppress Ralstonia solanacearum (R. solanacearum), the causative agent of brown rot disease in potatoes, using efficient and economical medications such as CuO and MgO metal oxide nanoparticles, both in vitro and in vivo, to reduce the risk of pesticide residues.ResultsCuO and MgO metal oxide nanoparticles were synthesized via a simple chemical process. The average particle size, morphology, and structure of the nanoparticles were characterized using UV-visible spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The growth of R. solanacearum was strongly inhibited by CuO and MgO NPs at a concentration of 3 mg/mL, resulting in zones of inhibition (ZOI) of 19.3 mm and 17 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CuO-NPs and MgO-NPs were 0.5, 0.6, and 0.6, 0.75 mg/mL, respectively. When applied in vivo through seed dressing and tuber soaking at their respective MIC concentrations, CuO-NPs and MgO-NPs significantly reduced the incidence of brown rot disease to 71.2% and 69.4%, respectively, compared to 43.0% and 39.5% in bulk CuSO4 and bulk MgSO4 treatments, respectively. Furthermore, CuO-NPs and MgO-NPs significantly increased the yield, total chlorophyll content, and enzyme efficiency of potato plants compared with the infected control plants. TEM revealed that the bacterial cytomembrane was severely damaged by nanomechanical forces after interaction with CuO-NPs and MgO-NPs, as evidenced by lipid peroxidation and ultrastructural investigations.ConclusionThe results of this study suggest that CuO-NPs and MgO-NPs can be used as intelligent agents to manage plant pathogens in agriculture. The use of metal oxide nanoparticles could provide a risk-free alternative for treating plant diseases, which are currently one of the biggest challenges faced by the potato industry in Egypt. The significant increase in yield, photosynthetic pigments, enzymatic activity, and total phenol-promoted resistance to R. solanacearum in potato plants treated with CuO-NPs and MgO-NPs compared to infected control plants highlights the potential benefits for the potato industry in Egypt. Further investigations are needed to explore using metal oxide nanoparticles for treating other plant diseases.

Open Access
Relevant
Xylaria furcata reconsidered and nine resembling species

BackgroundXylaria collections from termite nests with dichotomously branched stromata have been identified as X. furcata. However, Léveillé’s original material is no longer available, and the modern interpretation of X. furcata is based on a 1908 collection made by von Höhnel from termite nests at Buitenzorg Botanical Garden in Java. A packet of this von Höhnel material at FH was designated as the neotype by Rogers et al. in 2005.ResultsWe reexamined the neotype from FH and its duplicates from various herbaria and found that three different species were mixed in these specimens. Despite that all of them have dichotomously branched stromata and tiny ascospores, only one fits the 2005 neotypification of X. furcata, where exposed perithecial mounds on the stromatal surface were unambiguously indicated. This portion of material is redesignated as the neotype, while the other two species with immersed perithecia are described as new: X. hoehnelii and X. robustifurcata. The ITS sequence obtained from the neotype helped us designate a specimen with cultures obtained from it as the epitype. From specimens identifiable as X. furcata, we describe four new species: X. brevifurcata, X. furcatula, X. insignifurcata, and X. tenellifurcata. Additionally, we recognize X. furcata var. hirsuta at the species level as X. hirsuta and consider X. scoparia a distinct species rather than a synonym of X. furcata. Molecular phylogenetic analyses based on three protein-coding loci showed that X. furcata and resembling species were grouped into two clusters: the X. furcata cluster with half-exposed to fully exposed perithecial mounds and the X. hoehnelii cluster with largely immersed perithecial mounds.ConclusionTen species are recognized for X. furcata and resembling species, all of which could have been identified as X. furcata in the past. Its diversity has been overlooked primarily due to the small and similar stromata. Several additional species have been confirmed to be related to X. furcata by DNA sequences but are yet to be described due to the lack of mature stromata. While the species diversity of macrotermitine termites is equally high in Africa as in Asia, all of the species are primarily found in Asia, with X. hirsuta as the only exception. This suggests that there may be many more undiscovered species for this fungal group.

Open Access
Relevant