1,707 publications found
Sort by
Antifungal screening of selenium nanoparticles biosynthesized by microcystin-producing Desmonostoc alborizicum

Metal nanoparticles exhibit excellent antifungal abilities and are seen as a good substitute for controlling different kinds of fungi. Of all known taxa, cyanobacteria have received significant consideration as nanobiofactories, as a result of the cellular assimilation of heavy metals from the environment. The cellular bioactive enzymes, polysaccharides and pigments can be used as reducers and coatings during biosynthesis. The probability of the antifungal activity of selenium nanoparticles (SeNPs) to prevent plant fungi that can affect humans was evaluated and a toxic Iranian cyanobacterial strain of Desmonostoc alborizicum was used to study the biotechnology of SeNP synthesis for the first time. Characterization of nanoparticles with a UV-Vis spectrophotometer showed the formation of SeNPs in the range of 271–275 nm with the appearance of an orange color. Morphological examination of nanoparticles with Transmission Electron Microscopy (TEM), revealed the spherical shape of nanoparticles. The results of X-Ray Diffraction (XRD) showed 7 peaks and a hexagonal structure of average crystal size equal to 58.8 nm. The dispersion index of SeNPs was reported as 0.635, which indicated the homogeneity of the nanoparticle droplet size. The zeta potential of the nanoparticles was + 22.7. Fourier-transform infrared spectroscopy (FTIR) analysis exhibited a sharp and intense peak located at the wave number of 404 cm− 1, related to the SeNPs synthesized in this research. The results of the antifungal activity of SeNPs showed among the investigated fungi, Pythium ultimum had the highest resistance to SeNPs (14.66 ± 0.52 µg/ml), while Alternaria alternata showed the highest sensitivity (9.66 ± 0.51 µg/ml) (p < 0.05). To the best of our knowledge this is the first report concerning the characterization and antifungal screening of SeNPs biosynthesized by Iranian cyanobacteria, which could be used as effective candidates in medical applications.

Open Access
Relevant
Use of immunoinformatics and the simulation approach to identify Helicobacter pylori epitopes to design a multi-epitope subunit vaccine for B- and T-cells

BackgroundHelicobacter pylori cause a variety of gastric malignancies, gastric ulcers, and cause erosive diseases. The extreme nature of the bacterium and the implantation of this bacterium protects it against designing a potent drug against it. Therefore, employing a precise and effective design for a more safe and stable antigenic vaccine against this pathogen can effectively control its associated infections. This study, aimed at improving the design of multiple subunit vaccines against H. pylori, adopts multiple immunoinformatics approaches in combination with other computational approaches.ResultsIn this regard, 10 HTL, and 11 CTL epitopes were employed based on appropriate adopted MHC binding scores and c-terminal cut-off scores of 4 main selected proteins (APO, LeoA, IceA1, and IceA2). An adjuvant was added to the N end of the vaccine to achieve higher stability. For validation, immunogenicity and sensitization of physicochemical analyses were performed. The vaccine could be antigenic with significantly strong interactions with TOLK-2, 4, 5, and 9 receptors. The designed vaccine was subjected to Gromacs simulation and immune response prediction modelling that confirmed expression and immune-stimulating response efficiency. Besides, the designed vaccine showed better interactions with TLK-9.ConclusionsBased on our analyses, although the suggested vaccine could induce a clear response against H. pylori, precise laboratory validation is required to confirm its immunogenicity and safety status.

Open Access
Relevant
Expanding the genetic toolbox for Cutaneotrichosporon oleaginosus employing newly identified promoters and a novel antibiotic resistance marker

BackgroundCutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established.ResultsIn this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3’-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner.ConclusionsThe implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.

Open Access
Relevant
A novel allogeneic acellular matrix scaffold for porcine cartilage regeneration

BackgroundCartilage defects are common sports injuries without significant treatment. Articular cartilage with inferior regenerative potential resulted in the poor formation of hyaline cartilage in defects. Acellular matrix scaffolds provide a microenvironment and biochemical properties similar to those of native tissues and are widely used for tissue regeneration. Therefore, we aimed to design a novel acellular cartilage matrix scaffold (ACS) for cartilage regeneration and hyaline-like cartilage formation.MethodsFour types of cartilage injury models, including full-thickness cartilage defects (6.5 and 8.5 mm in diameter and 2.5 mm in depth) and osteochondral defects (6.5 and 8.5 mm in diameter and 5 mm in depth), were constructed in the trochlear groove of the right femurs of pigs (n = 32, female, 25–40 kg). The pigs were divided into 8 groups (4 in each group) based on post-surgery treatment differences. was assessed by macroscopic appearance, magnetic resonance imaging (MRI), micro–computed tomography (micro-CT), and histologic and immunohistochemistry tests.ResultsAt 6 months, the ACS-implanted group exhibited better defect filling and a greater number of chondrocyte-like cells in the defect area than the blank groups. MRI and micro-CT imaging evaluations revealed that ACS implantation was an effective treatment for cartilage regeneration. The immunohistochemistry results suggested that more hyaline-like cartilage was generated in the defects of the ACS-implanted group.ConclusionsACS implantation promoted cartilage repair in full-thickness cartilage defects and osteochondral defects with increased hyaline-like cartilage formation at the 6-month follow-up.

Open Access
Relevant
Comparison of the effects of nitrogen-, sulfur- and combined nitrogen- and sulfur-deprivations on cell growth, lipid bodies and gene expressions in Chlamydomonas reinhardtii cc5373-sta6

BackgroundBiofuel research that aims to optimize growth conditions in microalgae is critically important. Chlamydomonas reinhardtii is a green microalga that offers advantages for biofuel production research. This study compares the effects of nitrogen-, sulfur-, and nitrogen and sulfur- deprivations on the C. reinhardtii starchless mutant cc5373-sta6. Specifically, it compares growth, lipid body accumulation, and expression levels of acetyl-CoA carboxylase (ACC) and phosphoenolpyruvate carboxylase (PEPC).ResultsAmong nutrient-deprived cells, TAP-S cells showed significantly higher total chlorophyll, cell density, and protein content at day 6 (p < 0.05). Confocal analysis showed a significantly higher number of lipid bodies in cells subjected to nutrient deprivation than in the control over the course of six days; N deprivation for six days significantly increased the size of lipid bodies (p < 0.01). In comparison with the control, significantly higher ACC expression was observed after 8 and 24 h of NS deprivation and only after 24 h with N deprivation. On the other hand, ACC and PEPC expression at 8 and 24 h of S deprivation was not significantly different from that in the control. A significantly lower PEPC expression was observed after 8 h of N and NS deprivation (p < 0.01), but a significantly higher PEPC expression was observed after 24 h (p < 0.01).ConclusionsBased on our findings, it would be optimum to cultivate cc5373-sta6 cells in nutrient deprived conditions (-N, -S or –NS) for four days; whereby there is cell growth, and both a high number of lipid bodies and a larger size of lipid bodies produced.

Open Access
Relevant
Solubility of lamotrigine in age-specific biorelevant media that simulated the fasted- and fed-conditions of the gastric and intestinal environments in pediatrics and adults: implications for traditional, re-formulated, modified, and new oral formulations

BackgroundLamotrigine is an effective antiseizure medication that can be used in the management of focal and generalized epilepsies in pediatric patients. This study was conducted to quantify and compare the solubility of lamotrigine in age-specific biorelevant media that simulated the fasted and fed conditions of the gastric and intestinal environments in pediatrics and adults. Another aim was to predict how traditional, re-formulated, modified, and new oral formulations would behave in the gastric and intestinal environments across different age groups.MethodsSolubility studies of lamotrigine were conducted in 16 different age-specific biorelevant media over the pH range and temperature specified by the current biopharmaceutical classification system-based criteria. The age-specific biorelevant media simulated the environments in the stomach and proximal gastrointestinal tract in both fasted and fed conditions of adults and pediatric sub-populations. The solubility of lamotrigine was determined using a pre-validated HPLC-UV method.ResultsLamotrigine showed low solubility in the 16 age-specific biorelevant media as indicated by a dose number of > 1. There were significant age-specific variabilities in the solubility of lamotrigine in the different age-specific biorelevant media. Pediatric/adult solubility ratios of lamotrigine fell outside the 80-125% range in 6 (50.0%) and were borderline in 3 (25.0%) out of the 12 compared media. These ratios indicated that the solubility of lamotrigine showed considerable differences in 9 out of the 12 (75.0%) of the compared media.ConclusionFuture studies are still needed to generate more pediatric biopharmaceutical data to help understand the performances of oral dosage forms in pediatric sub-populations.

Open Access
Relevant
Development of short hairpin RNA expression vectors targeting the internal ribosomal entry site of the classical swine fever virus genomic RNA

BackgroundClassical swine fever (CSF) is a fatal contagious disease affecting pigs caused by classical swine fever virus (CSFV). The disease can be transmitted by pigs and wild boars, and it is difficult to prevent and control. To obtain necessary information to establish the CSFV resistant animals in a future study, we designed lentiviral vector-delivered short hairpin RNAs (shRNAs) targeting the conserved domain III of the internal ribosomal entry site (IRES) of the CSFV genomic RNA.ResultsFirst, we confirmed the effects of siRNAs on CSFV-IRES activity. We observed significant inhibition of CSFV-IRES activity by si42 (domain IIIa), si107 (domain IIIc), and si198 (domain IIIf) in SK-L cells and si56 (domain IIIb), si142 (domain IIId1) and si198 in HEK293 cells without affecting the amount of luciferase RNA. Next, we constructed lentiviral vectors expressing shRNA based on siRNA sequences. Treatment with shRNA-expressing lentivirus was examined at 7 and 14 days post infection in SK-L cells and HEK293 cells, and CSFV-IRES was significantly suppressed at 14 days (sh42) post infection in HEK293 cells without significant cytotoxicity. Next, we examined the silencing effect of siRNA on CSFV replicon RNA and observed a significant effect by si198 after 2 days of treatment and by shRNA-expressing lentivirus (sh56, sh142, and sh198) infection after 14 days of treatment. Treatment of sh198-expressing lentivirus significantly suppressed CSFV infection at 3 days after infection.ConclusionThe IRES targeting sh198 expressing lentivirus vector can be a candidate tool for CSFV infection control.

Open Access
Relevant