6,588 publications found
Sort by
Higher Incidence of Unruptured Intracranial Aneurysms among Black and Hispanic Women on Screening MRA in Large Urban Populations

Intracranial aneurysms have a reported prevalence of 1%-2% in the general population. Currently, only patients with a strong family history or autosomal dominant polycystic kidney disease are screened for intracranial aneurysms using MRA. The purpose of this study was to determine whether there are other specific patient populations at risk that should be offered screening for intracranial aneurysms. This is a retrospective case-control study of adult patients who underwent a screening MRA of their brain at our comprehensive stroke center from 2011 to 2020. Patients with a history of a known brain aneurysm were excluded. Data were extracted on patient demographics and medical comorbidities. Bivariate analyses were performed, followed by multivariable logistic regression, to identify factors associated with a positive MRA screen for incidental aneurysms. Of 24,397 patients eligible for this study, 2084 screened positive for a possible intracranial aneurysm. On bivariate analysis, significant differences were present in the following categories: age, sex, race and ethnicity, chronic constipation, and hyperlipidemia. On logistic regression analysis, older age (+10 years: OR = 10.01; 95% CI, 10.01-10.02; P = .001), female sex (OR = 1.37; 95% CI, 1.24-1.51; P = .001), non-Hispanic Black (OR = 1.19; 95% CI, 1.02-1.40; P = .031), and Hispanic ethnicity (OR = 1.35; 95% CI, 1.16-1.58; P = .001) versus non-Hispanic White remained significant when adjusted for other factors. Targeted screening for high-risk elderly women of Black or Hispanic descent will yield higher positive findings for brain aneurysms, which may mitigate the risk of rupture. Whether this is a cost-effective approach has yet to be determined.

Relevant
Deep Learning of Time–Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma

An autoencoder can learn representative time-signal intensity patterns to provide tissue heterogeneity measures using dynamic susceptibility contrast MR imaging. The aim of this study was to investigate whether such an autoencoder-based pattern analysis could provide interpretable tissue labeling and prognostic value in isocitrate dehydrogenase (IDH) wild-type glioblastoma. Preoperative dynamic susceptibility contrast MR images were obtained from 272 patients with IDH wild-type glioblastoma (training and validation, 183 and 89 patients, respectively). The autoencoder was applied to the dynamic susceptibility contrast MR imaging time-signal intensity curves of tumor and peritumoral areas. Representative perfusion patterns were defined by voxelwise K-means clustering using autoencoder latent features. Perfusion patterns were labeled by comparing parameters with anatomic reference tissues for baseline, signal drop, and percentage recovery. In the validation set (n = 89), a survival model was created from representative patterns and clinical predictors using Cox proportional hazard regression analysis, and its performance was calculated using the Harrell C-index. Eighty-nine patients were enrolled. Five representative perfusion patterns were used to characterize tissues as high angiogenic tumor, low angiogenic/cellular tumor, perinecrotic lesion, infiltrated edema, and vasogenic edema. Of these, the low angiogenic/cellular tumor (hazard ratio, 2.18; P = .047) and infiltrated edema patterns (hazard ratio, 1.88; P = .009) in peritumoral areas showed significant prognostic value. The combined perfusion patterns and clinical predictors (C-index, 0.72) improved prognostication when added to clinical predictors (C-index, 0.55). The autoencoder perfusion pattern analysis enabled tissue characterization of peritumoral areas, providing heterogeneity and dynamic information that may provide useful prognostic information in IDH wild-type glioblastoma.

Open Access
Relevant
Intensive Blood Pressure Management Preserves Functional Connectivity in Patients with Hypertension from the Systolic Blood Pressure Intervention Randomized Trial

The Systolic Blood Pressure Intervention (SPRINT) randomized trial demonstrated that intensive blood pressure management resulted in slower progression of cerebral white matter hyperintensities, compared with standard therapy. We assessed longitudinal changes in brain functional connectivity to determine whether intensive treatment results in less decline in functional connectivity and how changes in brain functional connectivity relate to changes in brain structure. Five hundred forty-eight participants completed longitudinal brain MR imaging, including resting-state fMRI, during a median follow-up of 3.84 years. Functional brain networks were identified using independent component analysis, and a mean connectivity score was calculated for each network. Longitudinal changes in mean connectivity score were compared between treatment groups using a 2-sample t test, followed by a voxelwise t test. In the full cohort, adjusted linear regression analysis was performed between changes in the mean connectivity score and changes in structural MR imaging metrics. Four hundred six participants had longitudinal imaging that passed quality control. The auditory-salience-language network demonstrated a significantly larger decline in the mean connectivity score in the standard treatment group relative to the intensive treatment group (P = .014), with regions of significant difference between treatment groups in the cingulate and right temporal/insular regions. There was no treatment group difference in other networks. Longitudinal changes in mean connectivity score of the default mode network but not the auditory-salience-language network demonstrated a significant correlation with longitudinal changes in white matter hyperintensities (P = .013). Intensive treatment was associated with preservation of functional connectivity of the auditory-salience-language network, while mean network connectivity in other networks was not significantly different between intensive and standard therapy. A longitudinal increase in the white matter hyperintensity burden is associated with a decline in mean connectivity of the default mode network.

Open Access
Relevant
Associating<i>IDH</i>and<i>TERT</i>Mutations in Glioma with Diffusion Anisotropy in Normal-Appearing White Matter

IDH and TERT mutations might infiltratively manifest within normal-appearing white matter with specific phenotypes such as microstructural changes undetectable by standard MR imaging contrasts but potentially associable with DTI variables. The aim of this retrospective glioma study was to statistically investigate IDH and TERT associations and classifications with DTI reported microstructure in normal-appearing white matter. Retrospective data from patients imaged between March 2012 and February 2016 were analyzed by grouping them as IDH-TERT subgroups and by IDH and TERT mutation status. DTI variables in the IDH-TERT subgroups were first identified by the Kruskal-Wallis test, followed by Dunn-Šidák multiple comparisons with Bonferroni correction. IDH and TERT mutations were compared with the Mann-Whitney U test. Classification by thresholding was tested using receiver operating characteristic analysis. Of 170 patients, 70 patients (mean age, 43.73 [SD, 15.32] years; 40 men) were included. Whole-brain normal-appearing white matter fractional anisotropy (FA) and relative anisotropy (RA) (P = .002) were significantly higher and the contralateral-ipsilateral hemispheric differences, ΔFA and ΔRA, (P < .001) were significantly lower in IDHonly patients compared with TERTonly, with a higher whole-brain normal-appearing white matter FA and RA (P = .01) and ΔFA and ΔRA (P = .002) compared to double positive patients. Whole-brain normal-appearing white matter ADC (P = .02), RD (P = .001), λ2 (P = .001), and λ3 (P = .001) were higher in IDH wild-type. Whole-brain normal-appearing white matter λ1 (AD) (P = .003), FA (P < .001), and RA (P = .003) were higher, but Δλ1 (P = .002), ΔFA, and ΔRA (P < .001) were lower in IDH mutant versus IDH wild-type. ΔFA (P = .01) and ΔRA (P = .02) were significantly higher in TERT mutant versus TERT wild-type. Axial and nonaxial diffusivities, anisotropy indices in the normal-appearing white matter and their interhemispheric differences demonstrated microstructural differences between IDH and TERT mutations, with the potential for classification methods.

Open Access
Relevant
Post-COVID-19 Brain [<sup>18</sup>F] FDG-PET Findings: A Retrospective Single-Center Study in the United States

The pathophysiology of neurologic manifestations of postacute sequelae of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection is not clearly understood. Our aim was to investigate brain metabolic activity on [18F] FDG-PET/CT scans in patients with a history of coronavirus disease 2019 (COVID-19) infection before imaging. This retrospective study included 45 patients who underwent [18F] FDG-PET/CT imaging for any reason and had, at least once, tested positive for COVID-19 at any time before imaging. Fifteen patients had available [18F] FDG-PET scans obtained under identical conditions before the infection. A group of 52 patients with melanoma or multiple myeloma who underwent [18F] FDG-PET/CT were used as controls. Whole-brain 2-sample t test analysis was performed using SPM software to identify clusters of hypo- and hypermetabolism and compare brain metabolic activity between patients with COVID-19 and controls. Paired sample t test comparison was also performed for 15 patients, and correlations between metabolic values of clusters and clinical data were measured. Compared with the control group, patients with a history of COVID-19 infection exhibited focal areas of hypometabolism in the bilateral frontal, parietal, occipital, and posterior temporal lobes and cerebellum (P = .05 uncorrected at the voxel level, family-wise error-corrected at the cluster level) that peaked during the first 2 months, improved to near-complete recovery around 6 months, and disappeared at 12 months. Hypermetabolism involving the brainstem, cerebellum, limbic structures, frontal cortex, and periventricular white matter was observed only at 2-6 months after infection. Older age, neurologic symptoms, and worse disease severity scores positively correlated with the metabolic changes. This study demonstrates a profile of time-dependent brain PET hypo- and hypermetabolism in patients with confirmed SARS-CoV-2 infection.

Open Access
Relevant