14 publications found
Sort by
Cellular senescence in aging: Molecular basis, implications and therapeutic interventions.

Cellular senescence is an irreversible proliferation arrest in response to cellular damage and stress. Although cellular senescence is a highly stable cell cycle arrest, it can influence many physiological, pathological, and aging processes. Cellular senescence can be triggered by various intrinsic and extrinsic stimuli such as oxidative stress, mitochondrial dysfunction, genotoxic stress, oncogenic activation, irradiation and chemotherapeutic agents. Senescence is associated with several molecular and phenotypic alterations, such as senescence-associated secretory phenotype (SASP), cell cycle arrest, DNA damage response (DDR), senescence-associated β-galactosidase, morphogenesis, and chromatin remodeling. Cellular senescence is a regular physiological event involved in tissue homeostasis, embryonic development, tissue remodeling, wound healing, and inhibition of tumor progression. Mitochondria are one of the organelles that undergo significant morphological and metabolic changes associated with senescence. Recent evidence unraveled that inter-organelle communication regulates cellular senescence, where mitochondria form a highly complex and dynamic network throughout the cytoplasm with other organelles, like the endoplasmic reticulum. An imbalance in organelle interactions may result in faulty cellular homeostasis, which contributes to cellular senescence and is associated with organ aging. Since mitochondrial dysfunction is a common characteristic of cellular senescence and age-related diseases, mitochondria-targeted senolytic or redox modulator senomorphic strategies help solve the complex problems with the detrimental consequences of cellular senescence. Understanding the regulation of mitochondrial metabolism would provide knowledge on effective therapeutic interventions for aging and age-related pathologies. This chapter focuses on the biochemical and molecular mechanisms of senescence and targeting senescence as a potential strategy to alleviate age-related pathologies and support healthy aging.

Relevant
Molecular characterization of circadian gene expression and its correlation with survival percentage in colorectal cancer patients.

Colorectal cancer (CRC) is a form of cancer characterized by many symptoms and readily metastasizes to different organs in the body. Circadian rhythm is one of the many processes that is observed to be dysregulated in CRC-affected patients. In this study, we aim to identify the dysregulated physiological processes in CRC-affected patients and correlate the expression profiles of the circadian clock genes with CRC-patients' survival rates. We performed an extensive microarray gene expression pipeline, whereby 471 differentially expressed genes (DEGs) were identified, following which, we streamlined our search to 43 circadian clock affecting DEGs. The Circadian Gene Database was accessed to retrieve the circadian rhythm-specific genes. The DEGs were then subjected to multi-level functional annotation, i.e., preliminary analysis using ClueGO/CluePedia and pathway enrichment using DAVID. The findings of our study were interesting, wherein we observed that the survival percentage of CRC-affected patients dropped significantly around the 100th-month mark. Furthermore, we identified hormonal activity, xenobiotic metabolism, and PI3K-Akt signaling pathway to be frequently dysregulated cellular functions. Additionally, we detected that the ZFYVE family of genes and the two genes, namely MYC and CDK4 were the significant DEGs that are linked to the pathogenesis and progression of CRC. This study sheds light on the importance of bioinformatics to simplify our understanding of the interactions of different genes that control different phenotypes.

Relevant