2,925 publications found
Sort by
Efficient Genome Editing in Most Staphylococcus aureus by Using the Restriction-Modification System Silent CRISPR-Cas9 Toolkit.

Staphylococcus aureus is a clinically important pathogen that threatens human health due to its strong pathogenicity and drug resistance, leading to meningitis, endocarditis, and skin and soft tissue infections. Genetic manipulation in S.aureus is a powerful approach for characterizing the molecular mechanisms of bacterial drug resistance, pathogenicity, and virulence. However, a strong restriction barrier presents a major obstacle to the extensive utilization of genetic manipulation tools in clinical isolates of S.aureus. Here, we constructed a restriction-modification (RM) system silent CRISPR-Cas9 toolkit that synonymously eliminated the type I RM targets of S.aureus from plasmids, downsized plasmids using minicircle technology, and combined with a plasmid artificial modification (PAM) method to circumvent the type II RM system. The RM-silent CRISPR-Cas9 toolkit enables a significant improvement in transformation (105-106 transformants per microgram plasmid in strains we tested) and high-success efficiency editing for gene deletion (knockout strain obtained in one-round electroporation) in a wide range of S.aureus species including clinical isolates of unknown genetic background. The RM-silent CRISPR-Cas9 toolkits could expedite the process of mutant construction in most S.aureus strains, and this approach could be applied to the design of other genetic toolkit plasmids for utilization in a wider range of S.aureus strains.

Relevant
Cold Exposure and Oral Delivery of GLP-1R Agonists by an Engineered Probiotic Yeast Strain Have Antiobesity Effects in Mice.

Advanced microbiome therapeutics (AMTs) holds promise in utilizing engineered microbes such as bacteria or yeasts for innovative therapeutic applications, including the in situ delivery of therapeutic peptides. Glucagon-like peptide-1 receptor agonists, such as Exendin-4, have emerged as potential treatments for type 2 diabetes and obesity. However, current administration methods face challenges with patient adherence and low oral bioavailability. To address these limitations, researchers are exploring improved oral delivery methods for Exendin-4, including utilizing AMTs. This study engineered the probiotic yeast Saccharomyces boulardii to produce Exendin-4 (Sb-Exe4) in the gastrointestinal tract of male C57BL/6 mice to combat diet-induced obesity. The biological efficiency of Exendin-4 secreted by S. boulardii was analyzed ex vivo on isolated pancreatic islets, demonstrating induced insulin secretion. The in vivo characterization of Sb-Exe4 revealed that when combined with cold exposure (8 °C), the Sb-Exe4 yeast strain successfully suppressed appetite by 25% and promoted a 4-fold higher weight loss. This proof of concept highlights the potential of AMTs to genetically modify S. boulardii for delivering active therapeutic peptides in a precise and targeted manner. Although challenges in efficacy and regulatory approval persist, AMTs may provide a transformative platform for personalized medicine. Further research in AMTs, particularly focusing on probiotic yeasts such as S. boulardii, holds great potential for novel therapeutic possibilities and enhancing treatment outcomes in diverse metabolic disorders.

Open Access
Relevant
Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains.

In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.

Relevant
Conditional Control of Universal CAR T Cells by Cleavable OFF-Switch Adaptors.

As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and nontraditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with coadministered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously, following Boolean logic. OFF-switch adaptors represent a robust new approach for the precision targeting of universal CAR T cells with potential for enhanced safety.

Open Access
Relevant