1,744 publications found
Sort by
Dendritic Cell-Derived Exosomes Stimulated by Treponema pallidum Induce Endothelial Cell Inflammatory Response through the TLR4/MyD88/NF-κB Signaling Pathway.

Exosomes have been implicated in vascular damage in recent research. The influence of dendritic cell-derived exosomes generated by Treponema pallidum (T. pallidum) on the inflammatory process of vascular cells was examined in this study. Human umbilical vein endothelial cells (HUVECs) were cocultured with exosomes isolated from dendritic cells induced by T. pallidum. Western blot and reverse transcription-quantitative real-time polymerase chain reaction were used to assess toll-like receptor 4 (TLR4) expression and the quantity of proinflammatory cytokines. The findings showed that the expression of TLR4 was considerably upregulated, and TLR4 knockdown dramatically reduced interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) production in exosome-treated HUVECs. Furthermore, TLR4 silencing reduced myeloid differentiation primary response protein 88 (MyD88) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) levels in exosome-treated HUVECs. Additionally, suppression of the activity of NF-κB with BAY11-7082, an NF-κB inhibitor, also reduced the exosome-treated inflammatory response. Our results suggested that dendritic cell-derived exosomes stimulated by T. pallidum induced endothelial cell inflammation, and the TLR4/MyD88/NF-κB signal axis was activated, significantly increasing IL-1β, IL-6, and TNF-α expression. This may have a significant role in the vascular inflammatory response in syphilis, which would contribute to the understanding of the pathogenesis of syphilis and the host immunological response to T. pallidum.

Relevant
Nitric Oxide-Induced Morphological Changes to Bacteria.

Antimicrobial resistance poses a serious threat to global health, necessitating research for alternative approaches to treating infections. Nitric oxide (NO) is an endogenously produced molecule involved in multiple physiological processes, including the response to pathogens. Herein, we employed microscopy- and fluorescence-based techniques to investigate the effects of NO delivered from exogenous NO donors on the bacterial cell envelopes of pathogens, including resistant strains. Our goal was to assess the role of NO donor architecture (small molecules, oligosaccharides, dendrimers) on bacterial wall degradation to representative Gram-negative bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecium) upon treatment. Depending on the NO donor, bactericidal NO doses spanned 1.5-5.5 mM (total NO released). Transmission electron microscopy of bacteria following NO exposure indicated extensive membrane damage to Gram-negative bacteria with warping of the cellular shape and disruption of the cell wall. Among the small-molecule NO donors, those providing a more extended release (t1/2 = 120 min) resulted in greater damage to Gram-negative bacteria. In contrast, rapid NO release (t1/2 = 24 min) altered neither the morphology nor the roughness of these bacteria. For Gram-positive bacteria, NO treatments did not result in any drastic change to cellular shape or membrane integrity, despite permeation of the cell wall as measured by depolarization assays. The use of positively charged quaternary ammonium (QA)-modified NO-releasing dendrimer proved to be the only NO donor system capable of penetrating the thick peptidoglycan layer of Gram-positive bacteria.

Relevant
Improved Antibacterial Activity of 1,3,4-Oxadiazole-Based Compounds That Restrict Staphylococcus aureus Growth Independent of LtaS Function.

The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.

Open Access
Relevant
Biochemical and Cellular Characterization of the Function of Fluorophosphonate-Binding Hydrolase H (FphH) in Staphylococcus aureus Support a Role in Bacterial Stress Response.

The development of new treatment options for bacterial infections requires access to new targets for antibiotics and antivirulence strategies. Chemoproteomic approaches are powerful tools for profiling and identifying novel druggable target candidates, but their functions often remain uncharacterized. Previously, we used activity-based protein profiling in the opportunistic pathogen Staphylococcus aureus to identify active serine hydrolases termed fluorophosphonate-binding hydrolases (Fph). Here, we provide the first characterization of S. aureus FphH, a conserved, putative carboxylesterase (referred to as yvaK in Bacillus subtilis) at the molecular and cellular level. First, phenotypic characterization of fphH-deficient transposon mutants revealed phenotypes during growth under nutrient deprivation, biofilm formation, and intracellular survival. Biochemical and structural investigations revealed that FphH acts as an esterase and lipase based on a fold well suited to act on a small to long hydrophobic unbranched lipid group within its substrate and can be inhibited by active site-targeting oxadiazoles. Prompted by a previous observation that fphH expression was upregulated in response to fusidic acid, we found that FphH can deacetylate this ribosome-targeting antibiotic, but the lack of FphH function did not infer major changes in antibiotic susceptibility. In conclusion, our results indicate a functional role of this hydrolase in S. aureus stress responses, and hypothetical functions connecting FphH with components of the ribosome rescue system that are conserved in the same gene cluster across Bacillales are discussed. Our atomic characterization of FphH will facilitate the development of specific FphH inhibitors and probes to elucidate its physiological role and validity as a drug target.

Open Access
Relevant
Small-Molecule Antibiotic Drug Development: Need and Challenges.

The need for new antibiotics is urgent. Antimicrobial resistance is rising, although currently, many more people die from drug-sensitive bacterial infections. The continued evolution of drug resistance is inevitable, fueled by pathogen population size and exposure to antibiotics. Additionally, opportunistic pathogens will always pose a threat to vulnerable patients whose immune systems cannot efficiently fight them even if they are sensitive to available antibiotics, according to clinical microbiology tests. These problems are intertwined and will worsen as human populations age, increase in density, and experience disruptions such as war, extreme weather events, or declines in standard of living. The development of appropriate drugs to treat all the world's bacterial infections should be a priority, and future success will likely require combinations of multiple approaches. However, the highest burden of bacterial infection is in Low- and Middle-Income Countries, where limited medical infrastructure is a major challenge. For effectively managing infections in these contexts, small-molecule-based treatments offer significant advantages. Unfortunately, support for ongoing small-molecule antibiotic discovery has recently suffered from significant challenges related both to the scientific difficulties in treating bacterial infections and to market barriers. Nevertheless, small-molecule antibiotics remain essential and irreplaceable tools for fighting infections, and efforts to develop novel and improved versions deserve ongoing investment. Here, we first describe the global historical context of antibiotic treatment and then highlight some of the challenges surrounding small-molecule development and potential solutions. Many of these challenges are likely to be common to all modalities of antibacterial treatment and should be addressed directly.

Open Access
Relevant
Enhanced Antimicrobial Screening Sensitivity Enabled the Identification of an Ultrashort Peptide KR-8 for Engineering of LL-37mini to Combat Drug-Resistant Pathogens.

Identification of novel antibiotics is of top importance because of the threat of antibiotic-resistant pathogens. Antimicrobial screening in Mueller-Hinton broth is frequently the first step in antimicrobial discovery. Although widely utilized, this medium is not ideal as it could mask activity of candidates such as human cathelicidin LL-37 against methicillin-resistant Staphylococcus aureus (MRSA). This study identified a sensitive medium where LL-37 displayed excellent activity against numerous pathogens, including MRSA. Our screen of ultrashort overlapping LL-37 peptides in this medium led to the identification of KR-8, four residues shorter than KR-12. Hence, our screen condition may increase positive compound hits during antimicrobial screening. KR-8 provided an appealing template for us to design LL-37mini, which was potent against MRSA, Escherichia coli, and Pseudomonas aeruginosa but not toxic to mammalian cells. LL-37mini also inhibited bacterial attachment and biofilm formation and disrupted preformed biofilms in vitro and killed MRSA in murine wound biofilms in vivo. Consistent with membrane targeting, MRSA failed to develop resistance to LL-37mini in a multiple-passage experiment. Because LL-37mini can be made cost effectively, it can be developed into new antibiofilm and antimicrobial agents.

Relevant
Oral Self-Nanoemulsifying System Containing Ionic Liquid of BX795 Is Effective against Genital HSV-2 Infection in Mice.

BX795 is an emerging drug candidate that has shown a lot of promise as a next-generation non-nucleoside antiviral agent for the topical treatment of herpes simplex virus type-1 (HSV-1) and herpes simplex virus type-2 (HSV-2) infections. Our studies indicated that BX795 has limited oral bioavailability, which could be attributed to its low and pH-dependent solubility. Lipid-based formulations such as self-nanoemulsifying systems (SNESs) can improve the solubility and oral bioavailability of BX795, but the poor lipid solubility of BX795 further limits the development of SNES. To improve the loading of BX795 into SNES, we evaluated the ability of various bulky and biocompatible anions to transform BX795 into an ionic liquid (IL) with higher lipid solubility. Our studies showed that sodium lauryl sulfate and docusate sodium were able to transform BX795 into IL. Compared to pure BX795, the developed BX795 ILs showed differential in vitro cytocompatibility to HeLa cells but exhibited similar in vitro antiviral activity against HSV-2. Interestingly, BX795 docusate (BX795-Doc), an IL of BX795 with ∼135-fold higher lipid solubility than pure BX795, could be successfully incorporated into an SNES, and the developed BX795-Doc-SNES could readily form nanoemulsions of size ≤200 nm irrespective of the pH of the buffer used for dilution. Our in vitro studies showed that BX795-Doc-SNES retained the inherent antiviral activity against HSV-2 and showed similar in vitro cytocompatibility, indicating the availability of BX795 from the SNES in vitro. Finally, orally delivered SNES containing BX795-Doc showed a significant reduction in HSV-2 infection in mice compared to the untreated control. Thus, the transformation of BX795 into IL and the subsequent incorporation of the BX795 IL into the SNES are an effective strategy to improve oral therapy of genital herpes infection.

Relevant