201,767 publications found
Sort by
Kidney medicine meets computer vision: a bibliometric analysis.

Rapid advances in computer vision (CV) have the potential to facilitate the examination, diagnosis, and treatment of diseases of the kidney. The bibliometric study aims to explore the research landscape and evolving research focus of the application of CV in kidney medicine research. The Web of Science Core Collection was utilized to identify publications related to the research or applications of CV technology in the field of kidney medicine from January 1, 1900, to December 31, 2022. We analyzed emerging research trends, highly influential publications and journals, prolific researchers, countries/regions, research institutions, co-authorship networks, and co-occurrence networks. Bibliographic information was analyzed and visualized using Python, Matplotlib, Seaborn, HistCite, and Vosviewer. There was an increasing trend in the number of publications on CV-based kidney medicine research. These publications mainly focused on medical image processing, surgical procedures, medical image analysis/diagnosis, as well as the application and innovation of CV technology in medical imaging. The United States is currently the leading country in terms of the quantities of published articles and international collaborations, followed by China. Deep learning-based segmentation and machine learning-based texture analysis are the most commonly used techniques in this field. Regarding research hotspot trends, CV algorithms are shifting toward artificial intelligence, and research objects are expanding to encompass a wider range of kidney-related objects, with data dimensions used in research transitioning from 2D to 3D while simultaneously incorporating more diverse data modalities. The present study provides a scientometric overview of the current progress in the research and application of CV technology in kidney medicine research. Through the use of bibliometric analysis and network visualization, we elucidate emerging trends, key sources, leading institutions, and popular topics. Our findings and analysis are expected to provide valuable insights for future research on the use of CV in kidney medicine research.

Just Published
Relevant
Current Understanding, Motivations, and Barriers Towards Implementing Sustainable Initiatives in the Hospitality Industry in the Age of Automation and Artificial Intelligence

Background:: Sustainability concerns are rapidly being acknowledged as a key concern for hospitality sectors worldwide. Sustainable initiatives immediately contribute to improved organizational performance in terms of utility consumption, waste management, and regulatory compliance, resulting in cost-effectiveness and competitive advantage through distinctiveness. Objective:: The purpose of the study is to analyze and summarize the motivations, indicators, and barriers towards applications of sustainable initiatives and modern technologies in the hospitality industry using the existing literature to develop a current understanding of the subject and know the way the current industry is thinking about it. Method:: This study is a combination of systematic and bibliometric review, where the systematic review was based on selected articles from reputed journal databases, and the bibliometric review was conducted using VOS viewer and web of science database for a period of 20 years (2002- 2022) Seven research questions were framed and answered for the systematic review. Result:: By describing the motivations, barriers, and impacts of implementing sustainability initiatives and cutting-edge technologies like AI and machine learning in the hospitality sector, the study helps practitioners and academics understand its present state for robust research. The current condition of such implantations in the hospitality sector is also discussed. Conclusion:: This study adds value by shedding light on the perspective of sustainability in the hospitality industry by considering the recommendations and practical advice for hotel management suggested in the existing literature about the application of current sustainability innovations and effective sustainability initiatives in hotel management.

Just Published
Relevant
Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks.

Despite providing high-performance solutions for computer vision tasks, the deep neural network (DNN) model has been proved to be extremely vulnerable to adversarial attacks. Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked. Besides, commonly used adaptive learning and fine-tuning technique is unsuitable for adversarial defense since it is essentially a zero-shot problem when deployed. Thus, to tackle this challenge, we propose an attack-agnostic defense method named Meta Invariance Defense (MID). Specifically, various combinations of adversarial attacks are randomly sampled from a manually constructed Attacker Pool to constitute different defense tasks against unknown attacks, in which a student encoder is supervised by multi-consistency distillation to learn the attack-invariant features via a meta principle. The proposed MID has two merits: 1) Full distillation from pixel-, feature- and prediction-level between benign and adversarial samples facilitates the discovery of attack-invariance. 2) The model simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration. Theoretical and empirical studies on numerous benchmarks such as ImageNet verify the generalizable robustness and superiority of MID under various attacks.

Open Access Just Published
Relevant
Global Workforce and Access: Demand, Education, Quality

There has long existed a substantial disparity in access to radiotherapy globally. This issue has only been exacerbated as the growing disparity of cancer incidence between high-income countries (HIC) and low and middle-income countries (LMICs) widens, with a pronounced increase in cancer cases in LMICs. Even within HICs, iniquities within local communities may lead to a lack of access to care. Due to these trends, it is imperative to find solutions to narrow global disparities. This requires the engagement of a diverse cohort of stakeholders, including working professionals, non-governmental organizations, nonprofits, professional societies, academic and training institutions, and industry. This review brings together a diverse group of experts to highlight critical areas that could help reduce the current global disparities in radiation oncology. Advancements in technology and treatment, such as artificial intelligence, brachytherapy, hypofractionation, and digital networks, in combination with implementation science and novel funding mechanisms, offer means for increasing access to care and education globally. Common themes across sections reveal how utilizing these new innovations and strengthening collaborative efforts among stakeholders can help improve access to care globally while setting the framework for the next generation of innovations.

Just Published
Relevant
Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects.

Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods by summarizing them from three perspectives: generative-based, contrastive-based, and adversarial-based. These methods are further divided into ten subcategories with detailed reviews and discussions about their key intuitions, main frameworks, advantages and disadvantages. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.

Open Access Just Published
Relevant