Sort by
Ultralight dark matter explanation of NANOGrav observations

The angular correlation of pulsar residuals observed by NANOGrav and other pulsar timing array collaborations show evidence in support of the Hellings-Downs correlation expected from stochastic gravitational wave background (SGWB). In this paper, we offer a nongravitational wave explanation of the observed pulsar timing correlations as caused by an ultralight Lμ−Lτ gauge boson dark matter (ULDM). ULDM can affect the pulsar correlations in two ways. The gravitational potential of vector ULDM gives rise to a Shapiro time delay of the pulsar signals and a nontrivial angular correlation (as compared to the scalar ULDM case). In addition, if the pulsars have a nonzero charge of the dark matter gauge group, then the electric field of the local dark matter causes an oscillation of the pulsar and a corresponding Doppler shift of the pulsar signal. We point out that pulsars carry a significant charge of muons, and thus the Lμ−Lτ vector dark matter contributes to both the Doppler oscillations and the time delay of the pulsar signals. The synergy between these two effects provides a better fit to the shape of the angular correlation function, as observed by the NANOGrav collaboration, compared to the standard SGWB explanation or the SGWB combined with time delay explanations. Our analysis shows that, in addition to the SGWB signal, there may potentially be excess timing residuals attributable to the Lμ−Lτ ULDM. Published by the American Physical Society 2024

Open Access
Relevant
The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay

To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1’s dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1’s relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1’s co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1’s two modes of transcription regulation remains to be examined.

Open Access
Relevant
The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay.

To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.

Open Access
Relevant
Split Majoron model confronts the NANOGrav signal and cosmological tensions

In the light of the evidence of a gravitational wave background from the NANOGrav 15 yr dataset, we reconsider the split Majoron model as a new physics extension of the standard model able to generate a needed contribution to solve the current tension between the data and the standard interpretation in terms of inspiraling supermassive black hole massive binaries. In the split Majoron model the seesaw right-handed neutrinos acquire Majorana masses from spontaneous symmetry breaking of global U(1)B−L in a strong first order phase transition of a complex scalar field occurring above the electroweak scale. The final vacuum expectation value couples to a second complex scalar field undergoing a low scale phase transition occurring after neutrino decoupling. Such a coupling enhances the strength of this second low scale first order phase transition and can generate a sizeable primordial gravitational wave background contributing to the NANOGrav 15 yr signal. Some amount of extraradiation is generated after neutron-to-proton ration freeze-out but prior to nucleosynthesis. This can be either made compatible with the current upper bound from primordial deuterium measurements or even be used to solve a potential deuterium problem. Moreover, the free streaming length of light neutrinos can be suppressed by their interactions with the resulting Majoron background, and this mildly ameliorates existing cosmological tensions. Thus cosmological observations nicely provide independent motivations for the model. Published by the American Physical Society 2024

Open Access
Relevant