Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Host-Guest Interactions of Metal-Organic Framework Enable Highly Conductive Quasi-Solid-State Electrolytes for Li-CO2 Batteries.

High-energy lithium (Li)-based batteries, especially rechargeable Li-CO2 batteries with CO2 fixation capability and high energy density, are desirable for electrified transportation and other applications. However, the challenges of poor stability, low energy efficiency, and leakage of liquid electrolytes hinder the development of Li-CO2 batteries. Herein, a highly conductive and stable metal-organic framework-encapsulated ionic liquid (IL@MOF) electrolyte system is developed for quasi-solid-state Li-CO2 batteries. Benefiting from the host-guest interaction of MOFs with open micromesopores and internal IL, the optimized IL@MOF electrolytes exhibit a high ionic conductivity of 1.03 mS cm-1 and a high transference number of 0.80 at room temperature. The IL@MOF electrolytes also feature a wide electrochemical stability window (4.71 V versus Li+/Li) and a wide working temperature (-60 °C ∼ 150 °C). The IL@MOF electrolytes also enable Li+ and electrons transport in the carbon nanotubes-IL@MOF (CNT-IL@MOF) solid cathodes in quasi-solid-state Li-CO2 batteries, delivering a high specific capacity of 13,978 mAh g-1 (50 mA g-1), a long cycle life of 441 cycles (500 mA g-1 and 1000 mAh g-1), and a wide operation temperature of -60 to 150 °C. The proposed MOF-encapsulated IL electrolyte system presents a powerful strategy for developing high-energy and highly safe quasi-solid-state batteries.

Read full abstract
Just Published
Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo.

Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.

Read full abstract
Just Published
Scanning Electron Microscopy Imaging of Twist Domains in Transition Metal Dichalcogenide Heterostructures.

Twisted two-dimensional (2D) material heterostructures provide an exciting platform for investigating fundamental physical phenomena. Many of the most interesting behaviors emerge at small twist angles, where the materials reconstruct to form areas of perfectly stacked crystals separated by partial dislocations. However, understanding the properties of these systems is often impossible without correlative imaging of their local reconstructed domain configuration, which exhibits random variations due to disorder and contamination. In particular, visualization of the local domain configuration allows determination of the local twist angle and, hence, the local lattice strain. Here, we demonstrate a simple and widely accessible route to visualize domains in the as-produced twisted transition metal dichalcogenide (TMD) heterostructures using electron channeling contrast imaging (ECCI) in scanning electron microscopy (SEM). This nondestructive approach is compatible with conventional substrates and allows domains to be visualized even when sealed beneath an encapsulation layer. Complementary theoretical calculations reveal how a combination of elastic and inelastic scattering leads to contrast inversions at the specified detector scattering angles and sample tilts. We demonstrate that optimal domain contrast is therefore achieved by maximizing signal collection while avoiding contrast inversion conditions.

Read full abstract
Open Access Just Published