Sort by
Planetary VO services on VESPA : MCD, SPICAM and EXOTOPO

IntroductionThe development of VESPA in the Europlanet 2024 program encompasses the improvement of Virtual Observatory (VO) services to enlarge and update its content.VESPA services use the EPN-TAP protocol defined for Planetary Science and Heliophysics. As a restriction of the more general TAP protocol, such services benefit from TAP-compliant tools and protocols previously defined in the VO [1]. The development of three Planetary services will be described here. The creation of a service providing outputs of a model of topography of exoplanets called EXOTOPO, and the update of two services providing profiles of various parameters of Mars atmosphere : SPICAM data and MCD simulations. These services are provided with user manuals linked in their description to explain the main search criteria that can be used. The three services are implemented on DaCHS, a commonly used TAP server provided by Heidelberg University.EXOTOPO ServiceDataset:The new service EXOTOPO gives access to simulation results based on a statistical model of  topographies of (exo)planet surfaces (3D visualisator : [2]). The model is based on 3 parameters (H : degree of smoothness, C1 : degree of intermittency, alpha : degree of multifractality), see Landais et. al 2018 [3] for more information. A new data set was generated to provide a larger range of parameter variation [4]. For each combination of parameters (H, C1, alpha and the Random Seed identifier), 5 types of data outputs are provided (see Fig. 1): An elevation map ; An earth-like colorized texture with continents and oceans, with and without hill-shading ; A gray texture map, small body-like, with and without hill-shading ; additionally, two spherical plots of altitude in 3D with the hill-shaded textures are provided as thumbnails of elevation maps.Implementation :The server hosting DaCHS is deployed on Docker from a VM (Virtual Machine) in ESPRI data center. A reverse-proxy on ESPRI redirects the server address to https://dachs-vo.ipsl.fr for outside. Data files are directly uploaded by ESPRI and linked in the service. The topographic map is provided in fits format with geological referencement and texture maps are provided in png, both are readable by VO tools like Aladin. MCD and SPICAM servicesDatasets :The MCD (Mars Climate Database [5]) is a database of Mars atmospheric parameters based on a modelization of Mars atmosphere developed in LMD (Laboratoire de Météorologie Dynamique). The database provides various quantities (pressure, temperature, wind, radiative fluxes, composition, ...) for a list of scenarios of dust and storm and for Martian years 24 to 32 (see the user manual [6] for more information). The MCD can be accessed through a web interface, or a full version can be downloaded and interrogated by a Fortran function. The VO service implemented in VESPA provides an alternative access to the MCD which allows the selection of data subsets using various research criteria. SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars [7]) is an ultra-violet [118-300]nm and infrared [1.0-1.7]µm spectrometer on board Mars Express. It has been observing the Martian atmosphere from January 2004 (Mars Year 27) onwards with nadir, limb and stellar/solar occultation measurements. The UV channel ceased operations in 2014, but the IR channel is still currently collecting data. Four types of data profiles derived from occultations in the UV channel are provided in the VO service SPICAM : aerosol extinction [8] derived from solar occultations, temperature, and densities of CO2 [9] and O3 [10] from stellar occultations. On the VO service, each SPICAM profile is associated with an MCD profile at the same coordinates for the current Mars Year scenario on the service (see Fig. 2). Furthermore, datalinks for each granule link to associated MCD profiles, with the possibility to select any available scenario.Implementation :The servers for MCD and SPICAM services are administered directly at the LMD and LATMOS laboratories, on VM that runs on debian 10 and hosting gavodachs2, and Apache configured for cgi (Common Gateway Interface). Data from SPICAM measurements are directly uploaded using Apache whereas MCD profiles are computed on-the-fly using cgi-scripts in python to call mcd and generate queried profiles. Both data from MCD and SPICAM are provided in VOtable format [11] which can be handled by VO tools such as  TOPCAT and be clearly referenced.Conclusion :The Virtual Observatory (VO) addresses the issue of providing FAIR (findable, accessible, interoperable, reusable) access to scientific data. VESPA services apply this paradigm to resources in Planetary Science and Heliophysics, with uniformed metadata, a powerful query interface to select data, and specialized formats for various data types. Furthermore, the VO provides the SAMP interface, a very simple way to plot and compare data that can be obtained from various services.The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.

Open Access
Relevant
Resonance confinement of collisional particle rings

<p>We have performed numerical simulations of narrow rings around small bodies, addressing both the m=2 resonance perturbations induced by a rotating tri-axial ellipsoidal central body and the m=1 perturbations due to a mass anomaly on the surface of the central body.  The simulations include up to 1e5 mutually colliding particles, and their partially inelastic impacts are resolved with the soft-sphere treatment introduced in Salo (1995; for details see Salo et al. 2018). An azimuthally complete ring is followed, and the integrations are performed in an inertial center-of-mass frame, lasting up to 1e5 central body rotations. Our goal is to see under which conditions the perturbation may prevent the collision-induced viscous spreading of the ring, instead leading to a confinement.</p> <p>Our study is motivated by the narrow dense rings discovered around the tri-axial Centaur object Chariklo (Braga-Ribas et al. 2014) and the dwarf planet Haumea (Ortiz et al. 2017). In particular the Chariklo ring consists of two narrow components, with the inner ring having an optical depth of the order of unity and possessing sharp edges. While the ellipticity of the ring is poorly constrained (measurements are consistent with a circular ring), it is known to exhibit substantial width variations (Berard et al. AJ, 154, 144). Both Chariklo and Haumea rings are close to a distance where the orbital period equals three central body rotations, corresponding to a 2/6 resonance with a rotating ellipsoidal body, and a 1/3 resonance for a mass anomaly (Sicardy et al. 2019).</p> <p>Sicardy et al. (2019) demonstrated that torques connected to resonances lead to a rapid clearing of particles from the vicinity of the central body, up to distances where orbital period equals two central body rotation periods.  Their test particle calculations approximated the effects of impacts with an additional Stokes friction term.  Our realistic collisional simulations confirm these results, and also indicate that the m=2 perturbation by the ellipsoidal body has an insignificant effect at the 2/6 resonance. On the other hand, we find that a sufficiently strong mass anomaly may eventually lead to formation of a narrow confined ring near 1/3  (Fig. 1).</p> <p>What maintains the ring confined?  Our favored mechanism is the reversal of angular momentum flux.  Without perturbation, the outward flow of angular momentum, together with collisional dissipation, always implies radial dispersal of a narrow ring. However, in a strongly perturbed ring (say with an eccentricity gradient related to width variations) the direction of flux may reverse, leading to a confinement of sharp edges (Borderies et al. 1982).  In Hänninen and Salo (1994, 1995; see also Goldreich et al 1995) such a confinement was verified in direct simulations of first order satellite Lindblad resonances, including the inner 2/1 (ILR) and outer 1/2 (OLR). Moreover, the<br />simulation-measured pressure tensor was shown to be in accordance with the theoretical mechanism.  With the current code we have verified this early simulation result, and extended similar measurements to the 1/3 case.  However, the 1/3 behaviour is more complicated due to the different order of the resonance.  While in the ILR and OLR resonances the response of the ring is more or less steady in the frame rotating with the perturber, this is not so in the 1/3 case.</p> <p><br />We are currently investigating in detail the confinement/ flux reversal mechanism, which results will be reported.  We will also discuss the scaling between the simulated particle size and the magnitude of the mass anomaly required for confinement.  Eventually,  in order to extend the calculations to realistic particle sizes, a larger number of particles needs to be simulated in a multi-processor environment: for that purpose we plan to use the new REBOUND-based soft-sphere code recently applied to local simulations of viscous overstability (Mondino-Llermanos and Salo, this meeting; submitted to MNRAS).  The soft-sphere impact treatment is important as the ringlets have a large optical depth; it will also facilitate the later inclusion of ring self-gravity, important for rings near the Roche zone where temporary clumping of particles is expected.</p> <p><img src="data:image/jpeg;base64, /9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wgARCARlBdwDAREAAhEBAxEB/8QAHQABAAEFAQEBAAAAAAAAAAAAAAcBAgMFBgQICf/EABoBAQEAAwEBAAAAAAAAAAAAAAABAgMEBgX/2gAMAwEAAhADEAAAAfqkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpBtiODiybT5uOxM5M4NOQCTsdAAQgaY1R1ZtT2HLk8FQAAAAAAAAAAAAAAAAADWFhtiITxHcERHTG3JTBypCZ9DnvPARQas8h7jCeM9pN582n0ObgAAAAAAAAAAAAAAAAAHmNKdGWnzWTYR8ak1h9JlQQMdESuUIFNGew2RqD1HsOwNUeMmsAAAAAAAAAAAAAAAAAAEHHnNSc4SOdwRgdCcefSIBCZuyPz6RBBRyxtjKe0xHoJzAAAAAAAAAAAAAAAAAABDZzxozAdueo1x15xJP4BCpkNYTyREa4hQ7U7oiclg7ci8lM7AAAAAAAAAAAAAAAAAAHKnzqSscWbc3p5DnjWn0yXgjk9ZDJOhExzB2J6iGiYT0GIxmUnIAAAAAAAAAAAoCoAAAAABDpviRDWnKnQnGnQGQ6kA1RtQAcgXmjNweooa87cAAAAAAAAAAAFCoAAAAABDJ2B2xzx5T0HPmY6M3QBqjagGtOUN8c0ZDoTRHQnGkmgAAAAAAAAAAFAVAAAAABzxGZKxtyNjqjWHtOYJMAPCZj0FDiT1mrMhvTni43h5ip1QAAAAAAAAAABw5Fp2Jzx0JgMhozfFDRHqPcZzXlD1lx5TObEsLTWHpMpzpsT1GU8IPcYjTnvNgYjWHuM57TSm6PCUPIDYHnOqO3AAAAAKHzASmYzzmvKHqMh4jwG+MJ5SpsDGakqbQ95rjYlhU8JpDoTCa89R6i40B7z0mc546ExmM1puD2Fp4j2HiMxzx0ZK4AAAAAOTIRJQNWe4qeA1h7jMeU1pvzAZzQHQFhpjIbMynpPAe4GI0xtjEWmrNwXnPGwPSZzwA9haac3J7yh5yp5jMbs78AAAAAHCmkNCTmAAAao2oAABrzYAAAGrNoAAAa82AAAB5D1gAA4405JIAAAABQgw6E6I7EAAGuNgVAABqzaAAAGsNmAAAa42IAAB5D1gAAEAE/gAAAAA405U8JNJUAAGvNgAAAas2gAAB5j0gAAGqNqAAAa82AAAOMOcJWAAAAAABFRKoAAAAAAAAAAAAAAAAAAAAAANQciSKAAAAAAccbo24AAAAAAAAAAAAAAAAAAAAAAIlJaAAAAAABHJIwAAAAAAAAAAAAAAAAAAAAAANOcUSaAAAAAACKiVQAAAAAAAAAAAAAAAAAAAAAAag5EkUAAAAAA483JtwAAAAAAAAAAAAAAAAAAAAAARKS0AAAAAACOSRSoAAAAAAAAAAAAAAAAAAAAABpziiTQAAAAAAQ8TCAAAAAAAAAAAAAAAAAAAAAADnTmiRwAAAAADizZHRAAAAAAAAAAAAAAAAAAAAAAAhUmoAAAAAAEUkrAAAAAAAAAAAAAAAAAAAAAAA5s5IlEAAAAAAELk0AAAAAAAAAAFACpQqAAAAAAAAADlznySAAAAAADiD3HUgAAAAAAAA8xoTTHQGU4M2p1RuAAAAAAAAAAQaTkAAAAAACIiXCoAAAAAAAAKFQeUzmIyl4AAAAAAAAAOVOWJTAAAAAABEpLQAAAAAAAAOLOQOENSeYoZj0ndEtlpvAAAAAAAADRnKkjAAAAAAHGm2N4AAAAAADznPnJnjMhwB4yWjXmI4Akw4k2B7yUDdlQAAAAAACHiYQAAAAAARkSYVAAAAAAABqD5/OVOQONPaaIHcnekvHfm/AAAAAAAANEcaSeAAAAADijVnkJUAAAAAAAPAQsQicMXmzMprjeGxOQN0ecEvE3nYHoAAAAAABqTkCRQAAAAAQmdQdcbYAAAAAA05Ep7jwHgPccqcabI6siQl84om04cuOeB9NmzAAAAAABExLIAAAAAOQOcPcSIAAAAAAChwJ81HEEmErncHXmuPeYznTiSHzkTqz6uNoAAAAAAAag4kk0AAAAAEZmhN2SIesAAAAAHmPloxnHnEGMymtNYdaeg1pqTozqyNjcG3O+JpJUKgAAAAA0RzJIYAAAABQ+YiWzpjeFQAAAACNSKDoToD2kNHGGpLTzm1MZy56zkDck6HSnZEVHYk1m1MwAAAAPKR0ScVAAAAAI/OKO5OvPaAAAAADznyARefUxNRnAAAAB4yED5XPpY+jCoAAAAAKGlOQJKAAAAAAKETEtAAAAAA4U+XTlChrj3m0OyO7O3OjNieA4k1RERwx5Doj1lh2R9ZnqAAAAANIcoSMAAAAAChxptzeAAAAA1BBZmMZtT5oMB4yRzOceTGaIlM4s0JHZuzWnOG1JQJFLzfkimYAAAAEPEwgAAAAAoUI0JMKgAAAAHInxMTefR56QAAAAAAaU+Uzjz7POnAAAAABojjSTwAAAAAARqSUAAAAChFx8yF5tSHSaCcSTj3lQAADEc0cUfLhzx25wRJJ9oGwAAAAB4jiCRAAAAAADkjoD2gAAAoc4RQTAQwQyRmTccodcTgdGb49J6DAeg4o8xxhoSMzWEcEqElHQnWEjGQAAAAjIkwqAAAAAAcMdwVAAAABFR8fn2GSkAAAAAAAAD5+PnM+7zfAAAAAHhODJKAAAAAABGZJgAAABgPmkhU7E4EkclgmY94AAAAABoT51IPM50RkPrg7MAAAA15xZIgAAAAAByJvz3gAAAofN5rztD5TOiN0SkSOSIAAAAAc0cCQ6bYik6EmQjonMlIAAAAi8lAAAAAAAHBneAAAAAiA+PT7gJBAAAAAAAAAPEQGfOh+gBtAAAAAa84QksAAAAAAEVEqgAAAxkEEDnLmwO7Prk24AAAAAAABHR8cnpOJJPPss3wAAANQciSKAAAAAAcebk24AABpiLjWmiIvIwJNPoclA2gAAAAAAONOYI2I9I4J1N0TAd4AAACJSWgAAAAAARySMAAAAcQfF59vHUgAAAAAAAAAAgUgU+5z2gAAAGnOKJNAAAAAABBZOgAAAOKPkc5Q8BKR9gG1AAAAAAAABQ4Q+azgzXE/n0wZgAADjTUEkgAAAAAHCHoOzAAAOMOIOBIkOhJjO8JCKgAAAAAAAoQAacic4w+jC8mw6gAAA+fj6BAAAAAABCZNgAAAMJ+fR9sHZgAAAAAAAAAAFh8RHen1EVAAABxRzpK4AAAAAAIrJUAAANMfChrzmz6DPqU2AAAAAAAAAABFR80nJm1PqclsAAA1ByJIoAAAAABx5uTbgAAig4sznAnDEwknEmAAAAAAAAAA+ZDUkUnRE4msJ4PeAACJiWQAAAAAAR0SKAAAD5JJMJqAAAAAAAAAAAANYfnqfdJ2gAAANQcSSaAAAAADUnKGqJWAAAI9PkU3B4z7KOmAAAAAAAAAAAIFPm4qes+4TfAAA05yRIoAAAAAImOoNwbkAAEaHrOSILOqJiJUKgAAAAAAAAA0Jz5oT5FJoJeOtOjAABEZLgAAAAANcccYSSAAADhT5IPuY9YAAAAAAAAAAAAIBI1PscqAAAaY4ok4AAAAAAhcxEqm4AANIfGxGptj6kJ0AAAAAAAAAAAB5T5IIYPQfUBP5UAAjooSMAAAAACGDszWkjAAHMkanLEVg+iSZAAAAAAAAAAADmSATKcAdKSQTiAAagicm8AAAAAAiUtO/N6AAUPi0nMmAAAAAAAAAAAAAA8p+dJ+hBuAAADgDXEoAAAAAAAhMmwAAHzORoac3R9umQAAAAAAAAAAAAhghAjI68+5T3gAHKGiJIAAAAAAOIPYdWAAR0Q8dqRIdOTOd8AAAAAAAAAAADgjhD51O6OwJ7N6AAQUToVAAAAABQh8mEAAHJHyGfdIAAAAAAAAAAAAAB8vm5PocAAA5M5clQAAAAAAETEsgAHgPko401p9VkugAAAAAAAAAAAAxHweeE3R9PElgAGkOVJFAAAAAAONNubsAGmIbOzIcNMdwfRwAAAAAAAAAAABoT5VN+RAfTh0ZJIABEBL4AAAAAAIzJMAABAJpj6XAAAAAAAAAAAAAANUfCh9+GQAAGjOMJPAAAAAABFZKgABHR8gnWGI+1TOAAAAaQ442IPKbo6sAAAAAEKnywbU68+zQADUnIEigAAAAAHHm6NsACPDIaQgQ0x9ZndgAAAEeAyFp5SQz0AAAAAofLpkIXJ/PUT8AARMSyAAAAAACOyRAAAfEh9MkhAAAAAGqODNuYjEbY64AAAAAHiPz/PvI3YAANQcSSaAAAAAACGyZAACKD5NKn0QT+VAAABwZYd8VAOTOaJRAAAAANEfCR6Doj7YPQADmznCRwAAAAADijYHSgAhMwnmPnQlk+rQAAAeYioks2YBYRQSGbcAAAAEUEbHFF57D6sN0ACEibQAAAAAARMSyAAD85D9Ej0gAAAA4gwnegA5s5Uk4AAAAAHyMTeSUAADmTkyUgAAAAAAQ0TKAAfKJwRyB9NH0AAAADnjTncgAA0BpDugAAAAYz8+TXm6Pu02YAOaOdJHAAAAAAOKPedMACLDZkeHzkfQx9FAAAAiclcqAAUInJYKgAAAHOmoOHIFPpM9JJ4AIRJuAAAAAABExLIABy58KH6JFQAAADSmhO4AABpDmSQQAAAAD5ZO5JtAABzByhKQAAAAAAIlJaAAPhwjc3p9aEtAAAAi4lEAA5I60EXEogAAAAHxsccc4ffR0YANGcqSMAAAAAAcabY3gBQhwxEPnoJ0JNAAANQc+duADlDqweU4ckIAAAAEIHHkeFx9MEkAAh4mEAAAAAAEZEmgAHKnyofaoAAAAI0JLAANWbQEbEkFQAAACh86GuPp0AAGiONJPAAAAABwZpywlcAFp8UnMmpPsgkwAAAoR8SEAR2cqdESYCCzriRgAAAAfMxFp5T6bJaABpzkiRQAAAAChAh2h15uQAQidQfJZqT7JJHAAAOHO4AB8tEokqAtPkU+uyoAAAB8uHVkKH04cEfQZUAiMlwAAAAAHEHMG2JIAAI2IJPr8AAAAEekhAHGHDElnQghQ25KgAAAAIVOFPqQAAGmOKJOAAAAABGJpTzkumzALT8/DCdCfYR1AAABQ447IFD5RNISWSEdwfFx3h9MlQAAAD4xOBPKfZ5I4AI9MRI4AAAAAPm87Y25IYAIyOMIkPWT4SoAAAcmdYAcGQqR0fV5uiPCKSayUAAAAaw+XjrSMDriUiVSoNaQ6TmVAAAAAI5OXPcSSbcAEcHymfeYAAAAI7JEAPl40RL50Z2h8hnvPrUAAAAHzyWH0SAADgjVEpAAAAAAFCHCZAAD8/T2nMn2iSUAAACNySAWkRlp6CWDwnz+dcS4ZAAAAD42IyMx9SE2AA5s5wkcAAAAAA4o2B0oBrCITuj41O0PpI7sAAA483RtgckcacsfRAOFIfJoOyAAABqj5zPQfM5IxP5NgAISJtAAAAAAKEUEsAAHNHw+foIVAAAAI4JHAIkMR1h2h5z5yO1JZM4AAAKHxwSST+AADmTkyUgAAAAAARUSqAAfIZDR0hPh9AgAAAjw7U9wAAKEVErAAAAAH55GzOVP0GN8ADUHIkigAAAAAHHm5NuAYyFDcHzgSASkSoAAACKiVQAADhDpDbgAAAHIkdmzPnA6wnMk8AESktAAAAAAAjkkYAAwH55H6JFwAAABwp0htgAACNSSgAAAAUPhsn4mcAAGnOKJNAAAAAABEhLYAKEBkKHJE5n1EAAAChD5LpkABQiYk89YAAAAMB8mEPm6Pvc9IANGcqSMAAAAAAcYbc3gAIlIBMR1BI5NwAAAOSPMdsAAc0c8SMAAAADmz5wPcRYbo+rTsQAQ8TCAAAAAACMSTgAAfm4feB2YAAAAInJQPQAARESabAAAAAA/OI/RA9oAANCccSeAAAAAACGSZgACJj5CPSbo+8S4AAAGMjMznaHoOMPASEe0AAAAAjU+SjXkln16ZwAcyc8SOAAAAAAcSe86cAENnMGkIfJGPr8qAAADlzljdHXmlOcPYdyAAAAAQWcQdaRIfRxJRUAEIE3gAAAAAAiUloAAHxWSSfRYAAAALSMDIdueo4UwneGwAAAAAOQPik+/wAzAAA5g5QlIAAAAAAEVEqgAGhPiQjg7M++DagAAAAsOZMJ056AAAAAAUPkY5w0R9FE4AAGoORJFAAAAAAOON0bcAGvIzPYfLJJ5JhLYAAAANcc6bU3pUAAAAA8J8okjnzKe8nw+hAACJSWgAAAAAARwSMVAAIkPl8++wAAAAChQ5o8x056QAAAAAD5FN2fT4AABpziiTQAAAAAARsSSAAD5wPnIwE4H1mAAAAAAAAAAAADnj4VPIdAfcxsAADxHEEiAAAAAAHJHQHtABjIQI5I1O3PafVxsQAAAAAAAAAAAcKQud8QqUPpc7gAAjIk0AAAAAAHDnblQAC0/N8+0iUAAAAAAAAAAAAADWHwGffpsgAADwnBklAAAAAA1ByZhJJAABDB8fm9Nofdp6QAAAAAAAAAAACBj5HO0JAPrwqAAeI4gkQAAAAAERnXnQHtAAIMIgKGsN2S+TOZQAAAAAAAAAAUPm07U6U+USVyfjZAAEZkmAAAAAA1xxZ7TtyoAAPnsg4+6j1gAAAAAAAAAAAAgsiA+0ioAAB4jgiSgAAAADEaMjszkontAAPIfJJGhiJCPs0uAAAAAAAAAAAODPiU9hgPrUlwAAHImoJFAAAAAOeI4O3LzrgADnSIjUEMnXGI+njtQAAAAAAAAADxnGmuOSICKn1ASwAAeIismEAAAAAHLnIHpO+NgAADzn5vH1SfQAAAAAAAAAAAABoj88T73O0AAABypzZJwAAAAAAIzJMAAAIgPj86M5Q+wiZQAAAAAAAAAAeM+TiJTTkwH14bMAAGvOLJEAAAAAAOSN6bAAAHLnz2aY1JMxpSeDbgAAAAAAAAA0BGBtThCAiTT6YOsAABFxKIAAAAABQ4Q7sqAAARQfDZ+hx1oAAAAAAAAAAAPhokg+nQAAADXHDElAAAAAAAiUloAAAofP5HpERtD7QO7KgAAAAAAAAGvPlI4oodifV5swAADRnKkjAAAAAAHGG3N4AADxnz2cMRsT8cSTySYZQAAAAAAAAR0cEdIRIQYSIfV53IAABDpMQAAAAAAIxJOAAAAPng+fD7jOnAAAAAAAAAAB81ETn3YVAAAANCccSeAAAAAACKiVQAAAYz5YIQN6D6OJvAAAAAAAABYfEpxBlPCfVROYAAANQciSKAAAAAAccbo24AABxx81lpxhJZ1hzZOZ2gAAAAAABoSMjnzfmoIiM59CEqgAAAiQlsAAAAAAEckjAAAAA+LjmD7uPUAAAAAAAAAD55Pmw+9jowAAAAac4ok0AAAAAAENkyAAAAGvPhs1RqDbEvn02bAAAAAAAA4M+dCHSQip9PEkAAAAHNnOEjgAAAAAHFGwOlAAABwZDxDp5CfToTjCVDtDbgAAAAFhoiEjQnUnmOOOdJeJ3PSAAACEibQAAAAAAROSwAAAAAfHJG592HRAAAAAAAAHlPj4jY++zcgAAAAHMnJkpAAAAAAAhsmQAAAAHGHyAYjwHPkgk/kqmxAAAAAOCI0PmM6UxFh9XEsgAAAA5s5wkcAAAAAA4o2B0oAAABEB86GgMpPpvThzXEpHTHWnuAANaaUsPlc9ZM5Q4IiMzEwE0HYgAAAEJE2gAAAAAAiYlkAAAAA8x81kDH0+ToXgAAAAAAio+Vjsj63NqAAAAADmTkyUgAAAAAARSSsAAAAAas+Ozkj3nHG/OkJAJwNmdCADzGqI5NcfJx15eao7smkks3QAAAANOckSKAAAAAAccbk3AAAABacEcIfNZ6DYk/nqI1NcdASYcaSMa02JDZQ9h0Rx52hxZGhmJ9J2KgAAAAiMlwAAAAAAEcEjgAAAAAHAny+aAn8nI9gAAAAOKPlcjs+tCbQAAAAAAaY4ok4AAAAAHEnOlpLQAAAAABwZ8hnZnPHhKHOnQG/OnOfOfOWOkOjLiMzrTpzvCeDagAAAAA0ZypIwAAAABQgw6c7E3gAAAAPOceQ0asiU8pKpMZYROdcesjI684okcyF57TmDijkjuSXCWDZgAAAAEPEwgAAAAA445A2ZJoAAAAAABDh8sHmJZJUOjJBBiOQOaIrIxNgTWT6ZQAAAAAADRHGkngAAAAGIhI2B4SXTZgAAAAAGuIXIgMRzprzym8NQdYcUdSWA2By5O5KBJAAAAAAAI9MJJAAAAABzZ8/kvF5IYAAAAAKEBnlOQI0OXNkTueIkkG1IeJyONIqOfI9JEJeJnN8AAAAADWkOk6AAAAAAhIHtJJNuAAAAAAAUOUIlIyOYPSaQ9xcSmdITGdEAAAAAAAADgjVEpAAAAAAAhsmQAAAAAAAHjNAQOc+bgi41hpDqDqzzm/JEJ2MwAAAAAAAObOcJHAAAAABQ4o2R0gAAAAABhBHRpyDTkTmD0m/NgcmdgcwYTeG7JeJVOtMgAAAAAAISJtAAAAAABExLIAAAAAAAAKFShUxFxiPQAAAAAAAAAAcycmSkAAAAAACKyVAAAAAAAAAAa01BnPIe0256QAAAAAAAAAak5AkUAAAAAA483RtgAAAAAAADXnlOAIyPIbQ48ks2Z7zpDYnVgAAAAAAAETEsgAAAAAAjskQAAAAAAAAAAAAAAAAAAAAAAGoOJJNAAAAAABE5LAAAAAAAAAAAAAAAAAAAAAAANKcmSMAAAAAAcabg3QAAAAAAAAABgMJ7QAAAAAAAAAACICXwAAAAAARoSWAAAAAAAAAAAAAAAAAAAAAADSHFkngAAAAAAhMmwAAAAAAAAAAAAAAAAAAAAAAHKGhJJAAAAAAOHPYdYAAAAAAAAAAAAAAAAAAAAAACCCdwAAAAAAQ6TEAAAAAAAAAAAAAAAAAAAAAADkjmCVAAAAAAARCS8AAAAAAAAAAAAAAAAAAAAAADQHMEjAAAAAAHGG0N+AAAAAAAAAAAAAAAAAAAAAACGSZgAAAAAARcSiAAAAAAAAAAAAAAAAAAAAAADnjkCUAAAAAAcoaU1pK4AAAAAAAAAAAAAAAAAAAAAANMckSMAAAAAUIeOiOnNyAAAAAAAAAAAAAAAAAAAAAACIiXQAAAAAc0cqZySAAAAAAAAAAAAAAAAAAAAAAAaU4sk4AAAAAxETnOnVm+N+YDKaQ3gOON8e4zGvB6i40ptzYmMoaw9JlOKOlPSZTxA9piOZN6bAxGuPYZz2nNnSHhKHlKGwNGa0kUAAAAA5kho7A7c9pryp6DIeM0B1phPMVPeYzVGsOnPea42JYVPCcidoYTwHpPSXmhLDdGc0BvzGYzXHsNuWniPYeIzHPnOksgAAAAFCKDjyQzqT2lx4DWnuMxpS035gMxoTflhyRujYmU9B4j2lDxHgNqYi01hty84o6Q9JnPAD2FpzB1B7y085U854DnyTQAAAAAa41xpDXFQChUFAVAABQqAAAUKgAAAAAAAAAAHcm0AAAAABxpvDhyoAABQqAAAUKgAAoVAAAAAAAKFQAAUNid6AAAAADwmlNcasAAAoCoBQqCgKgAAoVAAAKFQAAChUAAFDszdgAAAAAA+cieDagAAgglk3wAAIdJiAABxpxBNIAANaR6SoAADiTliXwAAcUcKTeAAAAAAcScSTYAADjTiyZgAAao4ElMAAEKncnYgAAh4mEAAAgglo3oAAIAJZOmAAAAAAPnwmE6IAAECEwm6AABCpNQAAOWI0J0AAB5CLSXQAAcacWTMAADmCKSfQAAAAADmyCj6ANyAAc0QofQx6gADmTmSTAAAcOcSTcAAARiScAACNTASiAADhThScyoAAAABYRKaonIAA85FJkJaAAMZoziSVgAAQkdsduAACNiSQAAD5uPoc9QAAPnwlc6wAAAAAGgISJkOoAAObIQPos9AABz5w5LAAAOPI7J0AABQislUAAEfmlJaAAByJFJ9CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BoTrCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAANabIAAAAAAAAAAAAAAAAAAAAAAAAAA0B6zaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDUHHmQsPYduZAAAAAAAAAAAAAAAAAAAAAAAAAAAAR0SKAAAAAAAAAAAAAAAAAAAAAAAAc+cmewwHSnQlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh5jizyF5edqe4AAAAAAAAAAAAAAAAAAAAAAAAAEdEigAAAAAAAAAAAAAAAAAAAAAoak409R5ToDqCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMZyBqD1HiOwN6AAAAAAAAAAAAAAAAAAAAAAACOiRQAAAAAAAAAAAAAAAAAAADVnGFTAdMdOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmjmzOYDcHXlwAAAAAAAAAAAAAAAAAAAABHRIoAAAAAAAAAAAAAAAAABqjkQWm2OuKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGtOIPWeA2Z2B6gAAAAAAAAAAAAAAAAAACOiRQAAAAAAAAAAAAAAAUNeciecuPWdyVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQwHEFTwHuOoNsVAAAAAAAAAAAAAAABz5wpxpKx2wAAAAAAAAAAAAAPGcQeI2B6TtS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAocSeYwGQ3p0wMZAJ9BAAAAAAAAAAAAGiPzeNUffBLYAAAAAAAAAKHzSfSxU8Rx54z1FTvSoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOdOdLDlT4dPqw+pwAAAAAAAAAAAD5vIkPuoqAAAAAAAAAUPkI+aT7lOlPUd8XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzefKpMJ9dm+AAAAAAAAAAAB5zRHSgAAAAAAAAA5k+TCJD6vPoUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgNyZSoAAAAAAAAAAAAAAAAAAAAAAABQ0B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+NYAAAAAAAAAAAAAAAAAAAAAAAd+bUAAAAAA1JwIAAAAAAAAAAAAAAAAAAAAAABsiQgAAAAAAcEagAAAAAAAAAAAAAAAAAAAAAAA7g3gAAAAAAPz6IwAAAAAAAAAAAAAAAAAAAAAAAPv8lUAAAAAAio+AAAAAAAAAAAAAAAAAAAAAAAACSz9CQAAAAAAfA5EYAAAAAAAAAAAAAAAAAAAAAAB9yE4AAAAAAA/PkjEAAAAAAAAAAAAAAAAAAAAAAA+/yVQAAAAACKj4AAAAAAAAAAAAAAAAAAAAAAAAJLP0JAAAAAAB8DkRgAAAAAAAAAAAAAAAAAAAAAAH3ITgAAAAAAD8+SMQAAD2HnMYNga8yFCwAAAAAAAAAAAAAAAH3+SqAAAAAARUfAAAABU95rweosMZ7zWgAAAAAAAAAAAAAAAks/QkAAAAAAHwORGAAAesxGEGcwHsMBiAAAAAAAAAAAAAAAB9yE4AAAAAAA/PkjEuPeXGsB7D6TNafOZN57ziiYT59OWAAAAAAAAAAAAAAAB9/kqgAAAAAEVHwADZGExGAE6nvI4ODPqA8poTZEVHEgAAAAAAAAAAAAAAEln6EgAAAAAA+ByIwbIqawGQ+nDxnzWbw+lD5YPpY1x85FAAAAAAAAAAAAAAAD7kJwAAAAAAB+fJGJ6iajakbHVHmNedqfPR9Cnz0fQpyZxxywAAAAAAAAAAAAAAAPv8lUAAAAAAio+AAfQRyRpDsAbs+fydiDibz3nzwfS5DJxoAAAAAAAAAAAAAABJZ+hIAAAAAAPgciMuJ+MpGZ2JqTbG7PnoE+kXHVnVnz8UAAAAAAAAAAAAAAAPuQnAAAAAAAH58kYnqPqUxENG8OZJaPIRydeYjQHrOOOWAAAAAAAAAAAAAAAB9/kqgAAAAAEVHwAD6RPMcsXA2pQ5I8hLhhNMec5sjEAAAAAAAAAAAAAAAks/QkAAAAAAHwORGXH1keIhs3xyxMJgIwI9J8IMPow8h86lAAAAAAAAAAAAAAAD7kJwAAAAABQqfnyRidMdSRyecoDaHiMRQ3JpgCgAAAAABcWgAFSgKlACpQAA+/yVQAAAAACKj4ABNpDQPOAbo0xU9xiMJtjSAAAAAAAAAAAAAAAAks/QkAAAAAAHwORGe8lIic85UqbA8x5wChszxnnAKgAFCpQAAqAChUFAACoBQH3ITgAAAAaoj06Mic3p80EYgAAAAAAAAAAAqVBQoCpQqAChcUALiheAVPvolQAAAAhsmQhU4Y7M+GwVKAAAAAAAAAAAAAAAAAAAAAAks/QkAAAA8JHJ1JE5lIFIjKgFxcChaCoAAABUFAWlxQFSgAKAoXAoCpQqXFAVKH3CTgAAAAUIjNUR0SOfNJGIAAAAAAAAAABUoAVKFQVLipUuBcVKlxcDIXFSp90kpgAAAEYnRELmgO+PiAAAAAAAAAAAAqCgAAAAAAAAAAJLP0JAAAABGhy5wp2hABEYBcZipcYy0oVKgAAAoAC0uAKgFAUBUqCoKlSpcULgVPtgm4AAAAAAH58kYgAAAAAAAAAAFxeXguLi8uLipcXF4Li8qXl5cVBUqfa5KIAAAAABFR8AAAAAAAAAAAAFS4qULAAAAAAAAAASWfoSAAAAAAD4HIjALz0mYtLTCWmQAAAFpQAFpcVKlQCoKlSpUvAKl5UuBcXFT7KJsAAAAAAB+fJGIBUFCoBQqULgVBeXgvMhcZDKVLzIXgvLgXFS8qXF5QqXFShcCgPsklEAAAAAAio+AAAVAAAAKgqXFxUuLjIVLjIDxHlAAAAAAAAABJZ+hIAAAAAAPgciQFDKbE9BUwHmLSpUtAKFCgBQvLS4uBUFxkBcXAvLgZChcVKlxkKGQofXpNQAAAAAAPz5IxAKgAFS8qXmUzGUvMheZgXmQvBcC8qXlxQuLyoKlSpUyGIqXlxcVKH1uSeAAAAAARUfAAAKgoCpcVLzIZS8yFxcXF5UuLgXlxoTxgAAAAAAAAAks/QkAAAAAAHwORIUB6DdntB5jwlCwoWFQAXFC8oXgvBUvKlS8qXlTKUKlTIXguKAuLy4qfVxM4AAAAAAPz5IxALy8yGU9BnMxnMpeDKXlxcXlxeXAvKmQtKlpcZC4oZQWlwLC4uBaVALT6tJPAAAAAAIqPgAAuLy4ymQymQymQvLjIXFS4uLipUuLgWHKHjAAAAAAAAABJZ+hIAAAAAAPggicA9Z0ZtDMeM05YChYUMhUvKmQuBeXFS4oZCoMhcXFShlKgqULyoKlQXmM+oCZQAAAAAAfn0RmZD1nrPUewymczGQvBkMhUyFxcAUMhaULipUqZCgAKAyAwmUtKgvLQWg+oiTQAAAAACKj4CLjOZz0noMplLzKXF5UuBUuLyheXFpcXFDyHHniKlShQAAAAAAAEln6EgAAAAAA+DCKjIUPUdebo9Z4jnjzl5eXFTKC8vMxeXFS4FxcVLgZQWl5QGUtLihcWguLSheYz6MJhAAAAAAB8BHHG4PeZzMZDOVKlheZQC8oXGMqVLywvLi8oVBjABcVKGIqXlS8xlpeXFChYfSxJoAAAAABFh8JG1PaZzKZC8yFwKlxUqWlS0vBUsLwVLDTHKnhBQuKFoAAAAAABJZ+hIAAAAAAPhgjQynlMxIB0hsTxnLHkPYZih6QZi8uLjIUMhUsM5aXFC4uKmMyFAUBcCpQtLzEUKFpOBLoAAABQ0xtTRGE+ZDUGcoXlC0sLwXlAVLC8oWl4Li0qWFxaUKFpeC4oChUtLwYwVBQqWl4PokksAAAA1BtzUGlNCfJ56CheC8uKAFAVLC4qXlpQFC8sLTAcyaE1xcCpjLAAAAAAACSz9CQAAAAak2hpTVnyscEZDTnrJMOnN8eo5E1R6zKZjIZS4yFC49BaXFhcXAF5aDEZC4wGUxl5YXlgLC8xmIqVJNJWAAAANYREa8jMmY5M1p5TEWFAYywvMZQFpUwlxUqWlhkBUxF4KlpQoAWFSwyFTGXlpeWFSwtLTzn0aSYAAAAQMTSfIxvSRiFQYTGCwtLShYXFS0AqWFQWFxaULDVmgNIaszgtMJYUKAAAFQUABJZ+hIAAAB4iJDXkYEskUHHHlOfNqSqdedMdAeY0JlPQec9JcZS4sKmQxmcwGYvMBcXGAyGIuM54y4oWHoPMVLTAeswnmPYaI6ok4AAAAocoes0JacQaw8xhMZjMRaVMALAXGIvLCwvKFDEWlS4oCwuLCwqXAxGYoYgVKFxYYzIXFpYT+SUAAAAc6XF5wp6yGzyHnMRaYiwqULChaVKAtLSpUqYyhiPMag0xpTXntLDEeYwlpaAVAKFQCoBJR+hAAAAAOdMR4DWkVHDGoOWOoJROxOnOxNgYgVKFwKF5YVDG2wxsuK423VZYY23C242ZarYplrty02FuWpFtXMcarjUxJfZSWxMq4bjrOP0nf6+wAAAAAAfO56DzGIxmItBgKFpcWlphMxaCwtKF5YYypcYiwtLgDGULi0tKlSwtLC8qULQYifCSwAAAAACPiDAYiwtLDCXGEuMYBQtLCoMRYXGI85rzWngNEUNsYDzHgPGeYtKgoXAFoLgUBJZ+hAAAAAAAPm05k1ByZ1ZJh1EdB2ed2+3g9EzrM6JVFqQttwIUlKumV0zqtZnfjtqtcc8mO6q1mysyvmeTHfRMk20KylqUKiVVEqtU8ZxKyGAAAAAACAyhjMZaWlhiKAsLDEWl5iLyhaYihaVLzGWF4LQYy4xF5iALC0qWgFpeYDICciSgAAAAADgCDACwxlpQxFAWlS0sBaWlhUtMJhPCeIwGvNMbk6Y1h4zUmrNIYihUqXguBcZCheUJGPv4AAAAAAEAGqPMc6bM7Y3P0fF7zl+/22j6vpAKgoVKFQChUAAFAVAAAAKFQCpQtLgDgjvgAAAAAAfPZmLzGYS0sLihiBiLSwtKlhaC4xFCpaYy4oChaVMYMYKmIqZDAZCgMZhPQVPOTkSUAAAAAAR6QWZQYipQoWgxlpaC0AwlTCWnnMRhMB5DXntO8O3PIa88hpDhjyGQ9BsTYHrLy82JsTOZj0mI+mQAAAAAAfOZ5zYm0NUbTv8ltOP0fsw6ujOgPQCwylhQuLS4tLS8xlxQsMxjKGQxl5aYz0GEFxiM5jLD0mAF5jMZxhIoAAAAAAIDLS4xlhcWGMxl5YWgtLAYi8tKFCwoWFpQtLDKYC4uMReWmIyFTEVLCpiLS8xlpUnAkkAAAAAA4AhAoWlTEUBUxFxjLS4sLCgLAecvLS0yGE9BLB3h0xlKmQsPCWFxnPWXJRRUAqVKJw690AAAAAAD5zPAdISEc7det7vK+Tg9daVMhlM5rTamsB7zTGwPGeY25qy4zmqN0aotNiao9xaeA3BqDIbM0xsTzmA2xpzOZzVG9OlJXAAAAAABAAKGQoULTEC0tKFpUsKFDGWFgKlpjBaWlTEZDADKYypcYywoVLChaZC0tKGEnEkkAAAAAA4AhEsAALCwqC0tKmIqWmUtBUyHpPYbw3p2h1pkDHW9XwfLt+fblr8+fL69XfS41ZVxzqUWlwJjuFwsol0ztuHLafoyTyejqAAAAAAfM5U3JJ5pe7ynKcXptNNuuNMcMaQtPaa09ZaeA2Z4DMZjWGyPOYj3mqPcDXG1PGD2GqNgWnkNka89BkNebEwHnNkas+uiZAAAUAKgAHz6l0txYXFAKRYULC4wFDCVLQWgqecuKVZFpQqYqti4wGQxFatEX1YVMcVLaqVjDSJtqSgAAUKgAAj0g2LwULgW1bFCoKGOr4tMhhMpQ9RnPUbqt2SWm3TXdXwdX1+ey6+v06+728/wBb2avoiktaoCqUlWVUULktLpbbI+WRAAAChUAAofMB5E2pJ2fL4O7yvJfO9py66M5g4E0RaZjyHrKHmPUYDKZDwnsMZiPWeI9JU8p6TGD0HiPYWHmPYeYymQ8Z6jGWHpPIfchNgAAIbOSPpE1xH50hoTEc71efxbePGXlpUsKCLasLgAYywvMYLC0oVMReULCwqVAMZUtEKoWlShaUlWWFREu8fppEx3AAD5qJJJMIkJbIfMR1mfLDfZ524sLiyLqoULShcWAFpaVLTIVi9llM8vsuO9Tu132j6mw0fWsXxnhPKas5M2RgPEZTxmEzGvMRaeIzHhMp9MgAAjIjk+kzyEfHTnPmnOY7fMaXPmuOuy59z872cczbx5z5y5xx4AChcUKFxaVKlpUFC4tKgoVAKlpUFC4oAUKgoXFD7jJwAABz5HBM4IZNOcWSEaQvMxUqWlxYYihUxFChgMhQtMh5yhQqXGAyFpaWgwgoWFSwoULDIYihUAsMZ5yeCSgADzHPGkJFIqOmIIPGSsQ8eoyFgKFpQFCwqWlpcYChUsBUuLy89huTuTvTmSPzlTnzmTjT2GvKGc8pQyHmMhYeYzHlJFPv4AAGjI/JcBFpyhyp05pjTlDanbkXHIHOnPHOnnKFShUoCpQqCgALi0qChUFC4tKlAVABQAFQfcZOAAAOYMB1xQAAgUsBYWFDEUMhhMRkKGEyGAuMJjKgqC0yGItMZkMJQtKgwlxQsLSwuMxiMYKl5jJwJJAAPIcsdAbQoADgSCy4uLC0oWgFpYWlTEWAxlC0tLChiBgNUZDujWHKHOGoNYa8oUKFxQqUBUoAUJMP0HAABzp4DsQUAB87mgPAeA7Qjg5U581BqjECpQAAFSgABUoVKAFShUFAACpQAAA+5CcAAAAAAAfPBkKlxYYigMIBhMReUMZQqWmMoULTGWlpeWloLwYjEZiwoWlQUMZQAFDATySUAAAAAAR8QWZiwoWlhQoWFpQtLC8xFSwtLCwsMB5jGeU1ZpDdF5ojWHiPKecoAAAAAASWfoSAAAAAAD50NQas5s6E4E5w1BrDxFgAAAAAAAAAAAAAAAAAAPuQnAAAAAAAEAmQ8xiLQYjCXFhaULDEWFwLS0tBjLCgBQqUBhLwUMZYVMhjKlpQsKloLjGTySUAAAAAAcAQcVLDCXnmBQxlpUtKGIqWlS0tMRaYjynlNca40RcVPGeMwGIxgAAAAAAks/QkAAAAAAHz+c+aw48uORNEas8p5y0AAAAAAAAAAAAAAAAAAH3ITgAAAAAAD56KmIwmAoUMZaYyhjLi0sLSpjBYZDGWlTGC0FChUsKAoULjEULi0F5aYyhaWn0CSWAAAAAAR8QWULTEYyhiLCpYAYypYWlChQtLDCYzxGtNQaQ8xeeYsMRjLQAAAAAASWfoSAAAAAAD50OfPGcgaU5s1Z4DAYQAAAAAAAAAAAAAAAAAAD7kJwAAAAAABARrjGYDAWGMGMoYi4xlxjBUxlC4xgtBQtKFwLSwsBcCphLipaC0tMZlLShefQRJQAAAAABwBBR5zCYi0xmIqULS0oULAULQAYwYDAas0RpTxFCwsMZQAAAAAAAks/QkAAAAAAHzQcyeU505E0prDzGItAAAAAAAAAAAAAAAAAAAPuQnAAAAAAAHzqeM8BhLDymQxFpaXGAvLCpQxlwLS8xgoWFSpaVLC4tKAFC8sBjKlhUvMReUMR9GkmAAAAAAEfHz8YjyFpjLS0sKAsBUsBcWAsKFxaUMRrzmzTmvLChQsAAAAAAABJZ+hIAAAAAAPkY5osNccKa48ZhMZQAAAAAAAAAAAAAAAAAAA+5CcAAAAAa02BpCh8+mgMJQxgxFplLCwqVLSgKFQWlS4sLS4qWFS4xFxcWFhUqVLCwyFpcAWFS4ofR5JgAAABrzYHgNGaU+YzEWlpaWlShUsLi0qWFxQqWlCpUtLSp5zQHMHhLQUKAAAAAAAAks/QkAAAAHgPcaY8x8rnDF5gOPPEecxlpQAAAAAAAAAAAAAAAAAAA+5CcAAAADWkQGI5M7MhE0B7i4vLipcYzKUKFC4F5aC4FoLi4xlxUxAvLi0oAACgBaWlxcWmMxn1AScAAAAQKTafJ51Z0R8oGxMxeXFxeWlS4oAXFC0qVLjGXAoULTWnImuKFAAAAAAAAASWfoSAAAAeMiEHHHRELEemYoc2YTAWFAAAAAAAAAAAAAAAAAAAAfchOAAAAAOOKHKnbHxCcAbM2R6D1GcoXgzmUtLyhaXF5jLi4qUKGUtLTMWmIvMoKlpcDEXAqC8xlxcVMB9SEmgAAAHMmc0ppzxHwie09Z6z0mQuLi4yAFS8qXFpUqXlhQqDIeU5M1RaAAAAAAAAASWfoSAAAADmjXnPnWHxwReekqawxmMsAAAAAAAAAAAAAAAAAAAAPuQnAAAAAAAH59EYl5mPSeo9RmPSXmQuMwKmQqC8qCoLgXgFDICwzFhUFS8xlxUoC8xguLD6sJPAAAAAAIqPgEvLjKegzmYyF5lKl5eVLwVLipcCoKlShy5qi0AAAAAAAAAks/QkAAAAAAHwSRQZTIeQoWFAAAAAAAAAAAAAAAAAAAAD7kJwAAAAAAB+fRGIAKmQynoMpmLzIXmcGUyAqVMhcZC4sLypQuKFxQqVLSpQvKgvKgqAXn1iSeAAAAAARUfABUFC4qZi8yGQvMxcXl5UuLgVMpQvKgGlNOUAAAAAAAAAJLP0JAAAAAAB8DkTAuLAWgAAAAAAAAAAAAAAAAAAAA+5CcAAAAAAAfnyRiAAAAZDIXmQvMhkKmQyl5UqCoMplBUAqC4zFC8oVBQoXAuKFh9jEoAAAAAAEVHwAAAAAXlxeVMhcXF5eXlSpcXguLjxGoKAAAAAAAAAEln6EgAAAAAA+ByIwCpQAAAAAAAAAAAAAAAAAAAAA+5CcAAAAAAAfnyRiAAAACpQuKguLy8uKl5eZC8yAqXFxcXlxQvBUuKlSpQqXgqAfZhKIAAAAABFR8AAAAAFShUFxQqVLy4vLipcDIXGI1xQAAAAAAAAAks/QkAAAAAAHwORGAVKAAAAAAAAAAAAAAAAAAAAAH3ITgAAAAAAD8+SMQAAACoAAKAFSoKlxUvLy4GQuLi8FxUoXF5lLQXFQXlC8+1yUgAAAAACKj4AAAAABUAAAAqAXguBUwFAAAAAAAAACSz9CQAAAAAAfA5EYAAAAAAAAAAAAAAAAAAAAAAB9yE4AAAAAAA/PkjEAAAAAAAAAqUAKlAVBcAXFS8uLipQqZSoLi8oXFT7mJTAAAAAAIqPgAAAAAFSgAAKlAACoAKAAAAAAAAAAks/QkAAAAAAHwORGAAAAAAAAAAAAAAAAAAAAAAAfchOAAAABqzgDpCMTpz5PIxAAAAAAAAAAAAAAABUAFSpUAuLipcC4+8yVAAAACHyXyHDTHvPhkAAAAAAAAAAAAAAAAAAAAAAAks/QkAAAA8RHp05GBuj5kIjAAAAAAAAAAAAAAAAAAAAAAAPuQnAAAAAoQ6as5AkA+XyMQAAAAAAAAAAAAAAAAVKlCgKgFCoAPv4lUAAAAiw6MhYzG8PiIAAAAAAAAAAAAAAAAAAAAAAAks/QkAAAAEXnLHNHYnzoRGAAAAAAAAAAAAAAAAAAAAAAAfchOAAAAAAAPz5IxAAAAAAAAAAAAAAAABUFAACoKlpUH38SqAAAAAARUfAAAAAAAAAAAAAAAAAAAAAAAABJZ+hIAAAAAAPgciMAAAAAAAAAAAAAAAAAAAAAAA+5CcAAAAAAAfnyRiAAAAAAAAAAAAAAAAAAAAAAAff5KoAAAAABFR8AAAAAAAAAAAAAAAAAAAAAAAAEln6EgAAAAAA+ByIwAAAAAAAAAAAAAAAAAAAAAAD7kJwAAAAAAB+fJGIAAAAAAAAAAAAAAAAAAAAAAB9/kqgAAAAAEVHwAAAAAAAAAAAAAAAAAAAAAAAASWfoSAAAAAAD4HIjAAAAAAAAAAAAAAAAAAAAAAAPuQnAAAAAAAH58kYgAAAAAAAAAAAAAAAAAAAAAAH3+SqAAAAAARUfAAAAAAAAAAAAAAAAAAAAAAAABJZ+hIAAAAAAPgciMAAAAAAAAAAAAAAAAAAAAAAA+5CcAAAAAAAfnyRiAAAAAAAAAAAAAAAAAAAAAAAff5KoAAAAABFR8AAAAAAAAAAAAAAAAAAAAAAAAEln6EgAAAAAA+ByIwAAAAAAAAAAAAAAAAAAAAAAD7kJwAAAAAAB+fJGIAAAAAAAAAAAAAAAAAAAAAAB9/kqgAAAAAEVHwAAAAAAAAAAAAAAAAAAAAAAAASWfoSAAAAAAD4HIjAAAAAAAAAAAAAAAAAAAAAAAPuQnAAAAAAAH58kYgAAAAAAAAAAAAAAAAAAAAAAH3+SqAAAAAARUfAAAAAAAAAAAAAAAAAAAAAAAABJZ+hIAAAAAAPgciMAAAAAAAAAAAAAAAAAAAAAAA+5CcAAAAAAAfMpyIAAAAAAAAAAAAAAAAAAAAAAB9MnXgAAAAAHGHzUAAAAAAAAAAAAAAAAAAAAAAAdefTIAAAAAAPm04kAAAAAAAAAAAAAAAAAAAAAAA+iCQAAAAAADwkbkrAAAGAik7g053hwhqjiT6HABQ4g2hpjvDhDWHAH0aVAMJx56DyHcHEHPHKH0GVANOcOdGeQ7c4g545E+hioAAABHxvzogAADgzbHGklnlOcObM5K4AOEO7IoJINWec5A1hNoAOGO5IlJPNSaQ5soTCACOTojhyVjSmiObLSYwAAADWHBkngAAFCGyRjmCRTiDWHIk0GxAMZx57jUndnDGjOGPo8AGM442RoSQDhTTHCn0cADSHHHUGnO7OFNQaIm8AAAAHBnHE2gAAHMkInWHlOVOoNkeIm8AFCEy8tOOOpNqeklYAGMhM9hyZ7TfHPkoHagA5M4UznOmM6I58k07UqAAAARgeIlwAAAhgymrOVJFI5O5JGOiABCBMZDRxx1JgN+SsesAEKkvHzSZztTkyQyQj2gAhs6kjM0B3pyhIZIp7AAAACNDVkvgAAGkPnwkQ1hxh3hceQmkyAFpEBlOaNSdKZTpSSAAWkPGU5A8R056zeEmAA484wxniOXOsPab0kYAAAAGI5I7IAAAxHFm6NadKYjnzMbs94PEZjUA1Z0xiNAbw2h4j0GUGvNIWHQlDmjsyoANeakuPKdADmTsi4AAAAHLm6PcAAAcqZzXnRFTGcub82J6wakxHtObOgLTMc+dAes8p7QeEqcidcYiw1h1IABzB6TTnVGExmrOqAAAABhOVOwAAALThTozQHUlTnyh0J7QeAymuMZrzpDEc8b82R5i8zg8BqTxHTGI586szAA1hrDOa06UxnPnVGYAAAAAAAAAAAA0ZHRGRvzSG4PKacmU0pG53RjOWPac+dieY15IBL4AAAAAAAAAAAAAAAAAAAABDR7CHTpjYkbnbnsJYIPLTqwRwbw950hHB0x9CHtAAAAAAAAAAAAAAAAAAAABz5xJHplLDxHhPQSkaU4w6Q8pqDbnKHXmkNqdITQAAAAAAAAAAAAAAAAAAAAAYSETpDwGkO+NWac6c25HZ05gPEc8bgqbQ15syTAAAAAAAAAAAAAAAAAAAAACPDnjZnPHTFh4jWkoHJGY8ZqjAXntMZnNcS6e4AAAAAAAAAAAAAAAAAAAAGAhA7I548x1JqzEbU3BxxsTOa00xtC4tPaZSTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf//EADsQAAAGAQIEBQQCAgECBgMBAQECAwQFBgAREgcTFzAUFSAhNhAWQFAiMTJBNyRgIyYzNDVCJXCAkLD/2gAIAQEAAQUC/wD+HQ6lY9i6LKx55LLzOyEHEJubhVJx66Sj2QPeIy1bfStnsbqoy88nZfpLtHr6PeoXZnaYRjIxzL6zklYpm4NrdOV07t/xBhoCTmJ2x2elTM2tI32ekoZkk+tNVs36bzNj5iylY+RVy6TM2nKQklYYe32+aPX666eXyrNnv3pP2WgzcrKNfpPxkvJIMW91e2diiu2Z4+cnZtaXOz8tYVXVstc+2vswlUmKV9iZc7i5Wua++Z77PTc3CqTb12iwZle8Rlq3DvyysV+kcuEWbdaxQreMwwgUrR5xAscbVpjz+vTD6yTltj7TamcXJOrzUEA9w+luYW+HYVKOspifRR7abVaS3ydja87e3WnrKvbTa7InfppvUl3d0p75V1bbXP0OekZyLuMzN+dQEpYYu3fpr0qmhbUn7FrxWkzWTzKTWkmrS7O272WnXLWTh2s5GF4RV2UZkY06PYVziD9Zr/lO7DKZHGsnmH0utyeISkhBQreoWuWYLcKayU0XxCrTxs4vfEB80MpdVSPLb+mWXRR4s0uQZJyO604gs6Y258cHvFjiQ6aydO4iyzGXpjt3C3FbhYZFq6+sH/yhchmfNKyM955lf/5BpDhFjOyZCStZnYOsVeTpDxsykvEFCEuzxs9lZ1y1k4hpNxheENORUQqv6S2fFpx03U4P2165d5H/AHIZ/RJiPY8PKA6aw1IiliMuJzGyMY+e4mxsOiiQdSfTiJ8Ljeb9j7rTlX8V5LY7i9kZ6yQ8FF0fiW9bSMTSVSMrU6EzqI4jPWz5KkOEWM7w/kWRWs25QQ4kLqke8W/014ra9imEuH9SQWyQjmMq1g6RW665bQkUzfjw2pgvZ+rQdmLB1iErif1Vio9aQ9EjUa3LOo+qVyLFnw7qLCQnqlAWUY+twsXFnrMCpEwNMr1aW/TTlPTsV1ZUytR8pk1X4iwt4GrwlZInXYRLI2gVWJkZuj1qwuomHjYJn9UouPQf/VGNYt3s3RqxYHPkMP5VEcP6rBvZmh1eedGgYdSLg6PWq65bQkU0fm4bUwz39LYmy7yv1vhzAlhIqKYwrDHnDqnvnr+BiJQk7UK9ZDMq5Cx0VH8OKfGO/q9ZNZFqggi1Q+jqk1V85bVOuM2kRQ6vBvpuj1mwuCQEOnEw1Dq8C8m6LWLA6GvQpomSq0BLx8DWIStJ/j2+HWm4yjeDTuyLB5NTRa/cftZ9V5lNb7ZnvPY+sTaplq/by1d3WJkj0KxNecQUZKyqa1ctBa88rM6STSq8yMo2rdlMyPW7KEM7rM6SVbVibNKQMK/lGpazPeVq1WRBwSrSYv29XlTNpGt2NKEeVicJIp1iZGVhoyYlGilbsoQbuszxJVvWJo0mSt2QYw9bsgRbisTRZNpWZ48rHxM3I153W7KRopWJkJVnWZw8kjXbUauSNasCRRrE35

Relevant
Rotational properties of the retrograde object (468861) 2013 LU28

Trans-Neptunian Objects (TNOs) are thought to be among the least evolved Solar System objects, which retain information on the origin and evolution of the outer parts of it. They are located at far distances of the Sun, where the influence of our star is less dramatic than in the closer regions. Thus, these icy objects are extremely interesting bodies that hide plenty of information on the physical and dynamical processes thatshaped our Solar System.We only know a few retrograde TNOs so far (e.g. 2008 KV42 [1], 2011 KT19 [2], 2004 XR190). One of the few known retrograde objects listed in the MPC database as a scattered disk object is 2013 LU28, which has a high orbital eccentricity (e = 0.95), a large semimajor axis (a= 181 AU) and a very high inclination (i = 125.4º). This exotic object is also classified as an “extended centaur”, because its perihelion at 8.7 AU moves it into the centaur region.The physical properties of 2013 LU28, such as its rotational period and light curve amplitude, are unknown but can be revealed through photometry. With this aim, we observed this object during three observing runs on 2021 January and March using two telescopes, the 1.23 m telescope at Calar Alto Observatory in Almería, Spain and the 1.5 m telescope at Sierra Nevada Observatory in Granada, Spain. From these observations we derived the first determination of the rotational light curve of 2013LU28 from which we derived its rotational period and its peak-to-peak light curve amplitude. The obtained amplitude turned out to be higher than the average amplitude of most TNOs, which points toward an elongated or a binary object. Other magnitudes, such as its absolute magnitude (H) were also derived. We will present and discuss preliminary results on all the above.AcknowledgementsThe authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). P.S-S. acknowledges financial support by the Spanish grant AYA-    RTI2018-098657-J-I00 "LEO-SBNAF" (MCIU/AEI/FEDER, UE). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucı́a and Consejo Superior de Investigaciones Cientı́ficas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada  (OSN) operated by Instituto de Astrofı́sica de Andalucı́a (CSIC).Bibliography[1] B. Gladman, J. Kavelaars, J.-M. Petit, M. L. N. Ashby, J. Parker, J. et al. ApJ 697:L91–L94, 2009[2] Ying-Tung Chen , Hsing Wen Lin, Matthew J. Holman, Matthew J. Payne et al. ApJ 827:L24 (5pp), 2

Relevant
Frost on dark surfaces: Finding a possible link between spectrally blue spots and frost on the surface of comet 67P/Churyumov-Gerasimenko

During its two years of operation on the comet 67P/Churyumov-Gerasimenko (67P), the Rosetta/OSIRIS instrument had observed numerous bright spots on the comet surface, with flat spectra in the visible (VIS) range that indicates the presence of water ice or other volatiles [1][2][3]. Towards the end of the mission in June – September 2016, a number of bright spots with an unsual negative VIS slope were detected in shadowed areas. Similar to the "blue" spots, frost was only observed on comet 67P in the Hapi region prior to the 2015 perihelion [4] but more widespread on the comet surface after that [5]. This correlation prompts us to investigate frost at different thicknesses, in which we produce and measure frost with the use of the SHINE equipment in IPAG.Frost is produced by exposing a cold sample holder covered in black tape to the open air, which allows atmospheric vapor to condense on top. The sample holder can be cooled simultaneously with frost disposition via liquid nitrogen; or it can be placed inside a sealed cold chamber e.g. a freezer, and the frost condensation occurs after removing the sample holder from the cold chamber and results in the formation of porous "needles" structures. After frost production, the sample holder is transferred inside the pre-cooled SHINE chamber in order to obtain spectra. The inner chamber is kept at approximately 200 K and atmospheric level pressure throughout each acquisition in order to stabilize the frost, and frost thickness can be reduced by operating the vacuum pump for a few minutes. All measurements are conducted with the same observational geometry: incidence i = 0, emergence e = 30° and azimuth a = 0.Our spectra feature show absorption bands at approximately 1.5 µm, 2 µm and 3 µm and also 1.65 µm in thicker frost samples (see Fig. 1). The water bands deepen with increasing frost thickness, in which the ~3 µm band is the first to appear with very thin frost layer (Fig. 1b) due to its highest sensitivity to water ice presence [6] and reaches saturation as soon as the frost layer is thick enough for the other two bands at 1.5 µm and 2 µm to appear. The Fresnel peak at ~3.1 µm is present in all spectra (except for the "pure" black tape"), indicating that the produced frost is composed of crystalline ice whose grain size is at least a few microns [7]. The ~1.65 µm peak is also a crystalline ice indicator, and its weak presence in our spectra can be explained by its high susceptiblity to temperature [8].Fig. 1 also shows that frost becomes more spectrally blue in the VIS range with increasing thickness, where the thickest frost specimen (Fig. 1a) has a linear-fitted slope of -3.36%/ (100 nm) in the 540 – 880 nm range, similar to a few "blue" spots on the comet whose spectral slope value is approximately -3%/ (100 nm) in the 535 – 882 nm range. A possible explanation for the blue VIS slope is the presence of very large water ice grain i.e. mm-sized or larger, as shown in simulated water ice spectra by Hapke modelling [9]. These results appear to support our hypothesis that frost could be a possible cause of the spectrally blue bright spots, and future experiments will seek to investigate the aforementioned matter further.Fig. 1: The image of a thick frost sample (a) and a thin frost sample (b) inside the SHINE chamber prior to measurement, alongside the spectra of frost at different thicknesses (c). The (a) and (b) samples correspond to the dark blue line and red line, respectively  

Relevant